K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Bài 1: 

a)CMR: ab + ba chia hết cho 11 

Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)

                                         = 11a + 11b chia hết cho 11                                                                                                                                                                                                                                                                                                              b)CMR: abc - cba chia hết cho 99

Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)

                                         = 99a - 99c chia hết cho 99

Bài 2

  A= (321 + 322 + 323) + ... + (327 + 328 + 329)                                                                                                                                                                               A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)                                          

  A=321 . 13 + ... + 327 . 13  

  A= 13 . (321 + ... + 327) chia hết cho 13

6 tháng 8 2016

Gọi 4 số liên tiếp là k

Ta có : k + (k + 1) + (k + 2) + (k + 3)

    = k + k + 1 + k + 2 + k + 3

    = 4k + 1 + 2 + 3

    = 4k + 6

    = 4k + 4 + 2

    = 4 . (k + 1) + 2

Vì 4(k + 1) chia hết cho 4

    2 không chia hết cho 4

=> 4 ( k+1) + 2 không chia hết cho 4

=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4.

6 tháng 8 2016

Gọi 4 số liên tiếp là k

Ta có : k + (k + 1) + (k + 2) + (k + 3)

    = k + k + 1 + k + 2 + k + 3

    = 4k + 1 + 2 + 3

    = 4k + 6

    = 4k + 4 + 2

    = 4 . (k + 1) + 2

Vì 4(k + 1) chia hết cho 4

    2 không chia hết cho 4

=> 4 ( k+1) + 2 không chia hết cho 4

=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4

5 tháng 8 2021

giúp mik vs

1.

a chia hết cho 2 dư 1

=> a có dạng là 2n+1

b chia hết cho 2 dư 1

=> b có dang là 2m+1

=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

1 tháng 9 2023

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

1 tháng 9 2023

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

23 tháng 8 2021

a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)

Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11

23 tháng 8 2021

b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)

Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)