K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Đặt \(a=\sqrt{27}+\sqrt{37}\)\(b=\sqrt{127}\)

Ta có: \(a^2=27+2\sqrt{27.37}+37=64+2\sqrt{999}\)\(b^2=127\)

Trừ cả a2 và b2 cho 64 ta có:

 \(a^2-64=2\sqrt{999}\) ; \(b^2-64=127-64=63\)

Bình phương cả a2 - 64 và b2 - 64 ta có:

\(\left(a^2-64\right)^2=4.999=3996\)\(\left(b^2-64\right)^2=63^2=3969\)

Vì 3996 > 3969 nên:

\(\left(a^2-64\right)^2>\left(b^2-64\right)^2\)

=> a > b

17 tháng 7 2015

co gv quan ly giup ban rui day

a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)

\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)

Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)

b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)

\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)

Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)

28 tháng 3 2021

Dễ mà:vvv

Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)

Mà \(\sqrt{144}=12\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)

Ta có: \(\sqrt{37}>\sqrt{36}=6\)

\(\sqrt{26}>\sqrt{25}=5\)

Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)

\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)

hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)

12 tháng 11 2017

a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)

Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)

\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)

8 tháng 6 2016

bình từng cái @

6 tháng 7 2016

 \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)

Có: \(\sqrt{16}>\sqrt{14}\)

\(\sqrt{33}>\sqrt{29}\)

=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

10 tháng 8 2016

ta tính VT ra rồi so sánh với VP

22 tháng 6 2017

a,Ta có:

  \(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)

\(12^2=144\)

Do 69<144 nên ...

b,tương tự ý a