CỨU TUI MN ƠI
CMR 1/6<1/(5^2)+1/(6^2)+1/(7^2)+...+1/(100^2)<1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z,t là 4 số dương.
M=\(\frac{x}{x+y+t}\)+\(\frac{y}{x+y+t}\)+\(\frac{z}{y+z+t}\)+\(\frac{t}{x+z+t}\)
Chứng minh M > 1
Đâu phải số đối đâu, nó giống một phương trình mà bạn cần chứng minh.
Bạn chỉ cần học công thức trong sách gk và các sách nâng cao phát triển và sách nâng cao chuyễn đề nhé!!
hok tốt!!
a) ta có: \(\widehat{BAx}+\widehat{ABy}=60^o+120^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒Ax//By
b) ta có: \(\widehat{CBy}+\widehat{BCz}=140^o+40^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒By//Cz
c) Ax//By, By//Cz⇒Ax//Cz
cảm ơn bạn nhiều lắm ko bt bạn sinh năm bao nhiêu để dễ xưng hô
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
đổi 1 giờ=60 phút
minh làm trong 1/2 giờ , tức là bằng:
60x1/2=30(phút)
thời gian minh giải gấp số lần thời gian tuấn giải là:
30:5=6(lần)
đáp số:6 lần
Sửa đề: \(\dfrac{1}{5}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{5}-\dfrac{1}{6}< \dfrac{1}{5\cdot6}< \dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{6}-\dfrac{1}{7}< \dfrac{1}{6\cdot7}< \dfrac{1}{6^2}< \dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)
...
\(\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{100\cdot101}< \dfrac{1}{100^2}< \dfrac{1}{100\cdot99}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}-\dfrac{1}{101}< A< \dfrac{1}{4}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}< A< \dfrac{1}{4}\)
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{100^2}\)
\(\dfrac{1}{5.6}\) < \(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\)
\(\dfrac{1}{6.7}\) < \(\dfrac{1}{6^2}\) < \(\dfrac{1}{5.6}\)
\(\dfrac{1}{7.8}\) < \(\dfrac{1}{7^2}\) < \(\dfrac{1}{6.7}\)
......................
\(\dfrac{1}{100.101}\) < \(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + ... + \(\dfrac{1}{100.101}\)< \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{99.100}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)< \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\)
\(\dfrac{6}{30}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+ .... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\) < \(\dfrac{1}{4}\)
\(\dfrac{5}{30}\) +( \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
Vì \(\dfrac{1}{30}\) > \(\dfrac{1}{101}\) ⇒ \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\) > 0 ⇒ \(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) > \(\dfrac{1}{6}\)
Vậy \(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) (đpcm)