Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|x-3| + | 2x - 4| =5
Lập bảng xét dấu:
x | 2 3 |
2x -2 | - 0 + | + |
x - 3 | - | - 0 + |
* Nếu x \(>\) 3 đẳng thức trở thành
x - 3 + 2x -4 = 5 => x = 4( thỏa mãn)
* Nếu 2\(\le\) x <3
3 - x + 2x -4 = 5 => x = 6 ( k thỏa mãn)
+ Nếu x < 2
3 - x + 4 - 2x = 5 => x = 2/3 (thỏa mãn)
Ta có: \(x+y+z=\left(by+cz\right)+\left(ax+cz\right)+\left(ax+by\right)=2\left(ax+by+cz\right)\)
=> \(x+y+z=2\left(ax+by+cz\right)=2\left[\left(ax+by\right)+cz\right]=2\left[z+cz\right]=2\left(1+c\right)z\)
=> \(\frac{1}{1+c}=\frac{2z}{x+y+z}\) (1)
Tượng tự:
\(\frac{1}{1+a}=\frac{2x}{x+y+z}\) (2)
\(\frac{1}{1+b}=\frac{2y}{x+y+z}\) (3)
Cộng các vế của (1), (2), (3) ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)
Ta có x+y=ax+by+2cz=z+2cz
=> x+y-z=2cz
=> \(c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)
\(\Rightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)
\(y+z=2ax+by+cz\Rightarrow y+z-x=2ax\Rightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{x+y+z}{2x}\)
\(\Rightarrow\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right)\)
\(z+x=2by+ax+cz=2by+y\Rightarrow z+x-y=2by\)
\(\Rightarrow b=\frac{z+x-y}{2y}\Rightarrow b+1=\frac{z+x-y}{2y}+1=\frac{x+y+z}{2y}\)
\(\Rightarrow\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)
Cộng từng vế của (1)(2)(3) ta có
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
*Kẻ By’ là tia đối của tia By => ABy kề bù với ABy’
=> ABy + ABy’ = 180
=> 120 + ABy’ = 180
=> ABy’ = 60
Ta có mAx = 60 =ABy’ , mà mAx và ABy’ ở vị trí đồng vị => Ax // By (1)
*Ta có yBC + CBA + ABy = 360
=> yBC + 90 + 120 = 360
=> yBC = 150
Ta có BCz = 150 = yBC, mà 2 góc này ở vị trí so le trong => By // Cz (2)
Từ (1), (2) => đpcm
Bài này không khó,chỉ dùng kiến thức về song song(các góc sole trong,...)
Cái này thì mình thấy chắc suy ra trực tiếp luôn
a) ta có: \(\widehat{BAx}+\widehat{ABy}=60^o+120^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒Ax//By
b) ta có: \(\widehat{CBy}+\widehat{BCz}=140^o+40^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒By//Cz
c) Ax//By, By//Cz⇒Ax//Cz
cảm ơn bạn nhiều lắm ko bt bạn sinh năm bao nhiêu để dễ xưng hô