Cho tam giác ABC (góc B=90 độ) có đường cao BD. Gọi E,F lần lượt là trung điểm của BD,DC và H là giao điểm của AE,BF. Tính góc AHB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác BDC ta có E, F lần lượt là trung điểm BD, CD nên EF là đường trung bình của tam giác BDC
=>EF//BC
Vì BC vuông góc AB=>EF vuông góc AB
Trong tam giác ABF ta có:BD vuông góc AF , EF vuông góc AB => E là trực tâm của tam giác nên góc AHB = 90*
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.
Giải:
a) Xét ΔABD và ΔEBD có :
AB=BE(gt)
B1ˆ=B2ˆ(=12Bˆ)
BD: cạnh chung
⇒ΔABD=ΔEBD(c−g−c)
⇒DA=DE ( cạnh tương ứng )
Vậy DA=DE
b) Vì ΔABD=ΔEBD
⇒ góc A= góc BED
Mà góc A=900⇒ góc BED=900
Vậy góc BED =900
c) VÌ ΔABD=ΔEBD ( cmt)
=> góc ABD = góc EBD( 2 góc tương ứng)
Xét \(\Delta ABIv\text{à}\Delta EBI\)có:
AB = EB
góc ABD = góc EBD
BI cạnh chung
=>\(\Delta ABI=\text{ }\Delta EBI\)
=> góc AIB = góc EIB và IA = IE (1)
Mà góc AIB + góc EIB =180 0
=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)
Từ (1),(2) => BI là đường trung trực của AE
Mà I \(\in\)BD
=> BD là đường trung trực của AE
Vậy BD là đường trung trực của AE