Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác BDC ta có E, F lần lượt là trung điểm BD, CD nên EF là đường trung bình của tam giác BDC
=>EF//BC
Vì BC vuông góc AB=>EF vuông góc AB
Trong tam giác ABF ta có:BD vuông góc AF , EF vuông góc AB => E là trực tâm của tam giác nên góc AHB = 90*
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.
a: Xét tứ giác ANDM có
ND//AM
AN//DM
Do đó: ANDM là hình bình hành
mà \(\widehat{NAM}=90^0\)
nên ANDM là hình chữ nhật
hay AD=NM