CMR: A = n*(n+1) * (2*n + 1) chia hết cho 6 với n là stn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
![](https://rs.olm.vn/images/avt/0.png?1311)