K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=\dfrac{9}{10}\)

=>\(\left|x+\dfrac{1}{5}\right|=\dfrac{1}{2}+\dfrac{9}{10}=\dfrac{14}{10}=\dfrac{7}{5}\)

=>\(\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{7}{5}\\x+\dfrac{1}{5}=-\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-\dfrac{8}{5}\end{matrix}\right.\)

b: \(\dfrac{5}{4}-3\left|2x+5\right|=\dfrac{3}{4}\)

=>\(3\left|2x+5\right|=\dfrac{5}{4}-\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

=>\(\left|2x+5\right|=\dfrac{1}{6}\)

=>\(\left[{}\begin{matrix}2x+5=\dfrac{1}{6}\\2x+5=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}-5=-\dfrac{29}{6}\\2x=-\dfrac{1}{6}-5=-\dfrac{31}{6}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{29}{12}\\x=-\dfrac{31}{12}\end{matrix}\right.\)

c: \(\left(\dfrac{3}{5}x+\dfrac{1}{2}\right)^2=\dfrac{25}{16}\)

=>\(\left[{}\begin{matrix}\dfrac{3}{5}x+\dfrac{1}{2}=\dfrac{5}{4}\\\dfrac{3}{5}x+\dfrac{1}{2}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{5}x=\dfrac{5}{4}-\dfrac{1}{2}=\dfrac{3}{4}\\\dfrac{3}{5}x=-\dfrac{5}{4}-\dfrac{1}{2}=-\dfrac{7}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{3}{4}:\dfrac{3}{5}=\dfrac{5}{4}\\x=-\dfrac{7}{4}:\dfrac{3}{5}=-\dfrac{7}{4}\cdot\dfrac{5}{3}=-\dfrac{35}{12}\end{matrix}\right.\)

d: \(3-\left(2x+1\right)^2=2\)

=>\(\left(2x+1\right)^2=3-2=1\)

=>\(\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bài 1:

a: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{9}{16}-\sqrt{\dfrac{4}{81}}:\dfrac{16}{9}+\left|-0,25\right|\)

\(=\dfrac{4}{9}\cdot\dfrac{9}{16}-\dfrac{2}{9}\cdot\dfrac{9}{16}+\dfrac{1}{4}\)

\(=\dfrac{4}{16}-\dfrac{2}{16}+\dfrac{1}{4}=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)

b: \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-8\right|\)

\(=-8+\dfrac{1}{2}\cdot8-5+8\)

=4-5=-1

c: \(\left(\dfrac{4}{3}-\dfrac{3}{2}\right)^2-2:\left|-\dfrac{1}{9}\right|+\dfrac{-5}{18}\)

\(=\left(\dfrac{8}{6}-\dfrac{9}{6}\right)^2-2:\dfrac{1}{9}-\dfrac{5}{18}\)

\(=\dfrac{1}{36}-18-\dfrac{5}{18}=\dfrac{1}{36}-\dfrac{10}{36}-18=-\dfrac{9}{36}-18\)

\(=-18-\dfrac{1}{4}=-18,25\)

d: \(\left(-\dfrac{3}{4}\right)^2:\left(-\dfrac{1}{4}\right)^2+9\left(\dfrac{1}{3}\right)^2+\left|-\dfrac{3}{2}\right|\)

\(=\left(-\dfrac{3}{4}:\dfrac{-1}{4}\right)^2+9\cdot\dfrac{1}{9}+\dfrac{3}{2}\)

\(=3^2+1+\dfrac{3}{2}=9+1+\dfrac{3}{2}=10+\dfrac{3}{2}=11,5\)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.

Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.

Các phép toán trong vòng lặp:

Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).

Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)

25 tháng 4 2024

tính E(300)=300/log2(300), E(90000)=90000/log2(90000)

Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện

nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).

Từ đó tính được x=3

18 tháng 7 2023

Hai tiêu chí đánh giá độ phức tạp tính toán quan trọng nhất là:

1. Thời gian thực thi (Runtime): Đây là thời gian mà chương trình hoặc thuật toán mất để thực hiện một nhiệm vụ hoặc tính toán. Thời gian thực thi là một tiêu chí quan trọng vì nó đo lường tốc độ hoạt động của chương trình, và đối với các ứng dụng yêu cầu xử lý dữ liệu lớn hoặc thực hiện tính toán phức tạp, thời gian thực thi càng nhanh thì chương trình càng hiệu quả.

2. Độ phức tạp không gian (Space complexity): Đây là lượng bộ nhớ mà chương trình hoặc thuật toán sử dụng trong quá trình thực hiện nhiệm vụ hoặc tính toán. Độ phức tạp không gian cũng là một tiêu chí quan trọng vì nó đo lường khả năng sử dụng tài nguyên bộ nhớ của chương trình, và đối với các ứng dụng có yêu cầu về tài nguyên hạn chế, độ phức tạp không gian càng thấp thì chương trình càng hiệu quả.

THAM KHẢO!
QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Thuật toán là một chuỗi các bước được thiết kế để giải quyết một vấn đề cụ thể. Một trong những yếu tố quan trọng để đánh giá hiệu suất của một thuật toán là độ phức tạp thời gian, tức là thời gian mà thuật toán mất để thực thi dựa trên kích thước đầu vào của vấn đề. Phân loại thuật toán dựa trên độ phức tạp thời gian là một phương pháp được sử dụng phổ biến để đánh giá và so sánh hiệu suất của các thuật toán khác nhau. Dưới đây là một số phân loại chính dựa trên độ phức tạp thời gian của thuật toán:

-O(1) (độ phức tạp thời gian hằng số): Đây là loại thuật toán có thời gian thực thi không thay đổi theo kích thước đầu vào. Thời gian thực thi của thuật toán này là cố định, vì vậy độ phức tạp thời gian là hằng số. Ví dụ: Truy cập vào phần tử trong mảng có kích thước cố định.

-O(log n) (độ phức tạp thời gian logarithmic): Đây là loại thuật toán có thời gian thực thi tăng theo logarit của kích thước đầu vào. Thuật toán này thường được sử dụng trong các bài toán tìm kiếm nhị phân, các thuật toán chia để trị, hoặc các thuật toán sắp xếp hiệu quả như QuickSort hoặc MergeSort.

-O(n) (độ phức tạp thời gian tuyến tính): Đây là loại thuật toán có thời gian thực thi tăng tỷ lệ trực tiếp với kích thước đầu vào. Ví dụ: Duyệt qua từng phần tử trong mảng một lần.

-O(n2) (độ phức tạp thời gian bậc hai): Đây là loại thuật toán có thời gian thực thi tăng theo bình phương của kích thước đầu vào. Ví dụ: Thuật toán sắp xếp Bubble Sort, các thuật toán tìm kiếm không hiệu quả như Linear Search trong một mảng lồng nhau.

-O(nk) (độ phức tạp thời gian bậc k): Đây là loại thuật toán có thời gian thực thi tăng theo lũy thừa của kích thước đầu

19 tháng 8 2023

Tham khảo:

QT1. Quy tắc cộng: O(f(n)+g(n))=O(max(f(n),g(n)))

QT2. Quy tắc nhân:

- Với hằng sô: O(C.f(n))=O(f(n))

- Với hàm số: O(f(n).g(n))=O(f(n)).O(g(n))