K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

b ) Làm tương tự như a )

9 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)

cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)

b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)

CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

8 tháng 3 2017

abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)

Áp dụng bđt AM-GM ta có:

A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)

\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)

\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)

\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)

Dấu "=" xảy ra khi a = b = c = d = 1

8 tháng 3 2017

cố gắng giúp mình nha

7 tháng 6 2020

Câu 1: Bất phương trình nào sau đây là bất phương trình bậc nhất 1 ẩn:

A. 0x + 3 > 0

B. x^2 + 1 > 0

C. x + y < 0

D. 2x - 5 > 1

Câu 2: Cho bất phương trình: -5x + 10 > 0. Phép biến đổi đúng là:

A. 5x > 10

B. 5x > -10

C. 5x < 10

D. x < -10

Câu 3: Nghiệm của bất phương trình -2x > 10 là:

A. x > 5

B. x < -5

C. x > -5

D. x < 10

Câu 4: Cho |a|=3 với a < 0 thì:

A. a = 3

B. a = -3

C. a = +- 3

D. 3 hoặc -3

Câu 5: Cho a > b. Bất đẳng thức nào dưới đây đúng?

A. a + 2 > b + 2

B. -3a - 4 > -3b - 4

C. 3a + 1 < 3b + 1

D. 5a + 3 < 5b + 3