K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

Câu 1: Bất phương trình nào sau đây là bất phương trình bậc nhất 1 ẩn:

A. 0x + 3 > 0

B. x^2 + 1 > 0

C. x + y < 0

D. 2x - 5 > 1

Câu 2: Cho bất phương trình: -5x + 10 > 0. Phép biến đổi đúng là:

A. 5x > 10

B. 5x > -10

C. 5x < 10

D. x < -10

Câu 3: Nghiệm của bất phương trình -2x > 10 là:

A. x > 5

B. x < -5

C. x > -5

D. x < 10

Câu 4: Cho |a|=3 với a < 0 thì:

A. a = 3

B. a = -3

C. a = +- 3

D. 3 hoặc -3

Câu 5: Cho a > b. Bất đẳng thức nào dưới đây đúng?

A. a + 2 > b + 2

B. -3a - 4 > -3b - 4

C. 3a + 1 < 3b + 1

D. 5a + 3 < 5b + 3

13 tháng 5 2021

c20: B 2x2+3=<7

c21: B x>-3

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

Bài 1: 

a: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)

\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x-1\right)^2+1>0\)(luôn đúng)

b: \(x^2-6x+10\)

\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x

c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)

d: \(-x^2+10x-30\)

\(=-\left(x^2-10x+30\right)\)

\(=-\left(x^2-10x+25+5\right)\)

\(=-\left(x-5\right)^2-5\le-5< 0\)

20 tháng 4 2019

Bài 2 :

a, \(\frac{1-5x}{x-1}\ge1\)

\(\Leftrightarrow\frac{1-5x}{x-1}\ge\frac{x-1}{x-1}\)

\(\Rightarrow1-5x\ge x-1\)

\(\Leftrightarrow-5x-x\ge-1-1\)

\(\Leftrightarrow-6x\ge-2\)

\(\Leftrightarrow x\le\frac{1}{3}\)

Vậy nghiệm của bất phương trình là \(x\le\frac{1}{3}\).

b, \(\frac{x}{x-2}-\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{x^2-3x}{x^2-5x+6}-\frac{2x-4}{x^2-5x+6}>\frac{x^2-5x+6}{x^2-5x+6}\)

\(\Rightarrow x^2-3x-2x+4>x^2-5x+6\)

\(\Leftrightarrow x^2-3x-2x-x^2+5x>6-4\)

\(\Leftrightarrow0>2\) ( vô lí )

Vậy bất phương trình vô nghiệm.

20 tháng 4 2019

Bài 1:

a, \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x-8< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x< 8\)

Vậy nghiệm của bất phương trình : x<0 ; x<8

b, \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\) \(x-1< \) 0 hoặc \(x-5< 0\)

\(\Leftrightarrow x< 1\) hoặc \(x< 5\)

Vậy bất phương trình có nghiệm là x<1 ; x<5