K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\) 

Dễ thấy x=0 là nghiệm của phương trình (1)

Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được

\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)

\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)

Vậy nghiệm của phương trình (1) là x=0

-Chúc bạn học tốt-

9 tháng 6 2021

Bài giải:

Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)\(-4\le x\le4\)

Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)

\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)

\(x=0\left(tm\right)\)

Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x

Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)

Vậy pt có nghiệm duy nhất là \(x=0\)

20 tháng 12 2016

dua ve phuong h hoac phuong trinh tong

26 tháng 8 2023

Chỗ Bunyakovsky mình sửa lại 1 chút:

\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\) \(\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)

\(=2\left(x-2+4-x\right)\) \(=4\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)

Hơn nữa \(x^2-6x+11=\left(x-3\right)^2+2\ge2\)

Từ đó dấu "=" phải xảy ra ở cả 2 BĐT trên, tức là:

\(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{4-x}\\x-3=0\end{matrix}\right.\Leftrightarrow x=3\)

Vậy pt đã cho có nghiệm duy nhất \(x=3\)

26 tháng 8 2023

Đính chính

...Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=2.2=4\)

\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le2\)

mà \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(pt\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[]{x-2}}=\dfrac{1}{\sqrt[]{4-x}}\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=4-x\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x=3\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy \(x=3\) là nghiệm của pt (1)