\(x^2+\sqrt{x+4}+\sqrt{x+11}=x+27\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))

<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1

<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)

TH1: \(0\le\sqrt{x+2}< 2\)

Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)

<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)

<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))

TH2 : \(2\le\sqrt{x+2}\le3\)

Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)

<=> \(1=1\) (luôn đúng)

Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)

TH3 \(\sqrt{x+2}>3\)

Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))

Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)

b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))

Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)

Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)

<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)

Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

<=> \(x^2-10x+27\ge2\) (2)

Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)

c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))

<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)

31 tháng 8 2019

d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)

<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)

<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)

<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)

=>x=\(2\sqrt{2}\)

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

18 tháng 9 2016

ĐKXĐ : \(4\le x\le6\)

Xét vế phải \(\left(1.\sqrt{6-x}+1.\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left(6-x+x-4\right)=4\)

\(\Leftrightarrow\sqrt{6-x}+\sqrt{x-4}\le2\)

Xét vế trái : \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với \(\hept{\begin{cases}4\le x\le6\\x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\) \(\Leftrightarrow x=5\) (thỏa mãn)

Vậy pt có nghiệm x = 5

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

20 tháng 12 2016

dua ve phuong h hoac phuong trinh tong

30 tháng 7 2019

\(\sqrt{4x}=\sqrt{5}\Rightarrow4x=5\Leftrightarrow x=1,25\)

\(\sqrt{4\left(1-x\right)^2}-6=0\Leftrightarrow4\left(1-x\right)^2=36\Leftrightarrow\left(1-x\right)^2=9\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=\left|x-2\right|=3\Leftrightarrow\left[{}\begin{matrix}x-2=-3\\x-2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

30 tháng 7 2019

tai sao tu\(\sqrt{4\left(1-x\right)^2}-6\) lai thanh \(4\left(1-x\right)^2\)=36