K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8

\(3^x+25=26\times2^0+2\times3^0\)

\(3^x+25=26\times1+2\times1\)

\(3^x+25=28\)

\(3^x=28-25\)

\(3^x=3\)

\(x=1\)

7 tháng 8

3x + 25 = 26 . 20 + 2 . 30
3x + 25 = 26 . 1 + 2 . 1
3x + 25 = 28
3x = 3
x = 1

22 tháng 7 2023

3x+25=26x22+2x30

3x+25=26x4+2

3x+25=106

3x=106-25=81

3x=34

⇒ x=4

22 tháng 7 2023

lê minh quang bị mắc lỗi ở chỗ 3^0

 

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tam thức bậc hai \(f\left( x \right) = 15{x^2} + 7x - 2\) có hai nghiệm phân biệt là \({x_1} =  - \frac{2}{3};{x_2} = \frac{1}{5}\)

và có \(a = 15 > 0\) nên \(f\left( x \right) \le 0\) khi x thuộc đoạn \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)

Vậy tập nghiệm của bất phương trình \(15{x^2} + 7x - 2 \le 0\) là \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)

b) Tam thức bậc hai \(f\left( x \right) =  - 2{x^2} + x - 3\) có \(\Delta  =  - 23 < 0\) và \(a =  - 2 < 0\)

nên \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

Vậy bất phương trình \( - 2{x^2} + x - 3 < 0\) có tập nghiệm là \(\mathbb{R}\)

20 tháng 1 2021

\(x^2\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

\(\Leftrightarrow x^2-x-\sqrt{3}x+\sqrt{3}=0\)

\(\Leftrightarrow x\left(x-1\right)-\sqrt{3}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\end{matrix}\right.\)

\(S=\left\{1,\sqrt{3}\right\}\)

 

20 tháng 1 2021

\(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

Xét \(\Delta=b^2-4ac=\left(1+\sqrt{3}\right)^2-4.1.\sqrt{3}=4-2\sqrt{3}\)

=> Phương trình có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)+\sqrt{4-2\sqrt{3}}}{2.1}=-1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)-\sqrt{4-2\sqrt{3}}}{2.1}=-\sqrt{3}\end{matrix}\right.\)

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0\) và tam thức bậc hai \(f\left( x \right) = 3{x^2} - 2x + 4\) có \(\Delta ' = {1^2} - 3.4 =  - 11 < 0\)

=> \(f\left( x \right) = 3{x^2} - 2x + 4\) vô nghiệm.

=> \(3{x^2} - 2x + 4 > 0\forall x \in \mathbb{R}\)

b) Ta có: \(a =  - 1 < 0\) và \(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)

=> \(f\left( x \right) =  - {x^2} + 6x - 9\) có nghiệm duy nhất \(x = 3\).

=> \( - {x^2} + 6x - 9 < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

30 tháng 6 2017

b), d) là PT bậc nhất một ẩn

21 tháng 7 2021

D

20 tháng 3 2022

a) PT bậc nhất một ẩn là: x-2=0; 4-0,2x=0
b) Giải:
x-2=0     (*)
⟺ x=-2
Vậy tập nghiệm của pt (*) là S={-2}
 4-0,2x=0    (**)
⟺-0,2x=-4
⟺x=-4/-0,2=20
Vậy tập nghiệm của pt (**) là S={20}

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 2 > 0\) và \(\Delta  = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\)

=> \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)

b) Ta có \(a =  - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\)

=> \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} =  - 4,{x_2} = 2\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)

c)

Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\)

=> \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \)

d) \( - 3{x^2} + 7x - 4 \ge 0\)

Ta có \(a =  - 3 < 0\) và \(\Delta  = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\)

=> \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\).

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)