Chứng minh rằng:
a) A = 55mũ5- 57mũ54 + 5mũ53 :7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a
M=(7+7^2)+(7^3+7^4)+...+(7^59+7^60)
=7.(7+1)+7^3.(7+1)+...+7^59+(7+1)
=7.8+7^3.8+...+7^59+8
=>M chia hết cho8
Rinu ko lm thì ra chỗ khác mà chơi.
\(a^7-a=a\left(a^6-1\right)=a\left(a^3-1\right)\left(a^3+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
a sẽ có 7 dạng \(7k;7k+1;7k+2;7k+3;7k+4;7k+5;7k+6\)
Dễ CM với \(a=7k;a=7k+1;a=7k+6\) thì \(a^7-a⋮7\)
Với \(a=7k+2\Rightarrow a^2+a+1=49k^2+28k+7k+7⋮7\)
Với \(a=7k+3\Rightarrow a^2-a+1=49k^2+42k+7k+7⋮7\)
Tương tự xét tiếp nha.mik mệt quá r:(
Mình nghĩ đề là: Chứng minh rằng: A=\(5^5-5^4+5^3⋮7\)
Giải:
Ta có: \(A=5^5-5^4+5^3\)
\(=5^3\left(5^2-5+1\right)=5^3.21\)
Vì \(21⋮7\Rightarrow5^3.21⋮7\)\(\Rightarrow A⋮7\)