K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8

Mình nghĩ đề là: Chứng minh rằng: A=\(5^5-5^4+5^3⋮7\)

Giải: 

Ta có: \(A=5^5-5^4+5^3\)

\(=5^3\left(5^2-5+1\right)=5^3.21\)

Vì \(21⋮7\Rightarrow5^3.21⋮7\)\(\Rightarrow A⋮7\)

 
22 tháng 11 2021

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

26 tháng 8 2017

56454

26 tháng 8 2017

=56454 nha bn

chúc các bn hok tốt

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

8 tháng 12 2014

a

M=(7+7^2)+(7^3+7^4)+...+(7^59+7^60)

  =7.(7+1)+7^3.(7+1)+...+7^59+(7+1)  

  =7.8+7^3.8+...+7^59+8

=>M chia hết cho8

 

 

16 tháng 12 2022

A=7+72+73+...+760

A=(7+72)+(73+74)+(75+76)+...+(759+760)

A= 7(1+7)+73(1+7)+75(1+7)+...+759(1+7)

A= 7.8+73.8+75.8+...+759.8

A= 8(7+73+75+...+759)

vì 8(7+73+75+...+759) ⋮ 8 ⇒ A ⋮ 8