K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

Ta có \(3^{80}+9^{21}=9^{40}+9^{21}=9^{21}.\left(9^{19}+1\right)\)

Ta thấy luỹ thừa \(9^{19}\)là luỹ thừa của 9 mũ lẻ mà luỹ thừa của 9 có mũ lẻ luôn tận cùng bằng 9 nên \(9^{19}\)tận cùng bằng 9 suy ra 

\(1+9^{19}\)tận cùng bằng 0 hay \(\left(1+9^{19}\right)⋮10\)mà \(9^{21}⋮9\). Mặt khác \(ƯCLN\left(10;9\right)=1\)

Suy ra \(9^{21}.\left(9^{19}+1\right)⋮90\)hay \(3^{80}+9^{21}\)chia hết cho 90 

Vậy.............

30 tháng 10 2017

Cám ơn nha!

9^90-81

=9^90-9^2

=9^2(9^88-1) chia hết cho 9^2(9^2-1)=9^2*80 

=>9^90-81 chia hết cho 80

25 tháng 10 2023

a)

\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)

Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)

Vậy...

b)
\(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{24}.\left(3^4-3^3-3^2\right)\\ =3^{24}.\left(81-27-9\right)\\ =3^{24}.45\)

Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)

Vậy...

7 tháng 11 2018

\(3^{21}-9^9=3^{21}-3^{18}\)

\(=3^{18}\left(3^3-1\right)\)

\(=3^{18}\cdot26\)

\(=3^{18}\cdot2\cdot13⋮13\left(đpcm\right)\)

3 tháng 10 2017

\(3^{21}-9^9=3^{21}-3^{18}\)

\(=3^{18}\left(3^3-1\right)\)

\(=3^{18}.26\)

\(=3^{18}.2.13\)

\(\Rightarrow3^{21}-9^9⋮13\)

3 tháng 10 2017

\(3^{21}-9^9=3^{21}-3^{18}\)

\(=3^{18}\left(3^3-1\right)=3^{18}.26\)

\(=3^{18}.2.13\)

\(\Rightarrow\)................

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

`#3107.101107`

\(B=4+4^2+4^3+...+4^{89}+4^{90}\)

\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)

\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)

\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)

\(=21\left(4+4^{88}\right)\)

Vì \(21\left(4+4^{88}\right)\) `\vdots 21`

`\Rightarrow B \vdots 21`

Vậy, `B \vdots 21.`

21 tháng 10 2017

Từ 1 \(\rightarrow\) 90 có 90 số.

Nhóm thành: 90 : 6 = 15 (nhóm) . Mỗi nhóm có 6 số hạng.

A = (2 + 22 + 23 + 24 + 25 + 26) + ... + (285 + 286 + 287 + 288 + 289 + 290)

A = 126 + ... + 284. (2 + 22 + 23 + 24 + 25 + 26)

A = 126 + ... + 284. 126

A = 126 . (1 + ... + 284)

Do 126 \(⋮\) 21 \(\Rightarrow\) A \(⋮\) 21.

27 tháng 10 2017

ta có:

22+23+24+...+290=2.(1+2+22)+24.(1+2+22)+...+288.(1+2+22)

=2.7+24.7+...+288.7=7.(2+24+...+288) chia hết cho 7 (1)

ta lại có:

2+2+...+290=2.(1+2)+23.(1+2)+...+289.(1+2)=2.3+23.3+...+289.3=3.(2+23+...+289) chia hết cho 3 (2)

Từ (1) và (2) suy ra

2+22+23+...+290 chia hết cho 3 và 7 hay chia hết cho 21