tìm số nguyên x,y thỏa mãn :4x^2 +8y^2 +12xy-16x-22y +14=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$
$\Rightarrow x=16$ hoặc $x=-16$.
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)
Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)
\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
- Với \(y=-1\) thay vào (1):
\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)
- Với \(y=1\) thay vào (1):
\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
- Với \(y=0\)
\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)
1) ta có: x^2-12xy+8^3=-8 <=> x^2-12xy+8y^3+8=0 <=> (x+2y)^3 -6xy(x+2y) -12xy +8=0
<=> (x+2y+2)^3 -6(x+2y)(x+2y+2) -6xy(x+2y+2)=0
<=>(x+2y+2)(x^2 +4y^2 +4 +4xy +8y+4x -6x -12y-6xy)=0
<=> (x+2y+2)(x^2 +4y^2 +4 -2xy-2x-4y)=0
<=>\(\orbr{\begin{cases}x+2y+2=0\\x^2+4y^2+4-2xy-2x-4y=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-2\left(y+1\right)\\y=-\frac{\left(2+x\right)}{2}\end{cases}}\) (vì x^2 +4y^2+4-2xy-2x-4y>0 (tự c/m) )
Vậy x=...... và y= .....
2) ta có: B= -x^2-y^2+xy+2x+2y
<=> 2 B= -2x^2 -2y^2 +2xy+4x+4y
<=>2B=-(x^2-2xy +y^2) -(x^2 -4x +4) -(y^2 -4y+4)+8
<=> 2B= -(x-y)^2 -(x-2)^2 -(y-2)^2 +8
Mà (-(x-y)^2 \(\le0\) với mọi x,y
-(x-2)^2\(\le0\) với mọi x'
-(y-2)^2\(\le0\) với mọi y
nên 2B \(\le8\) với mọi x,y => B \(\le4\)với mọi x,y
Dấu '=' xảy ra khi: x=y=2
Vậy GTLN của B là 4 khi x=y=2
Lời giải:
$x^2+4x-y^2=0$
$\Leftrightarrow (x+2)^2-4-y^2=0$
$\Leftrightarrow (x+2)^2-y^2=4$
$\Leftrightarrow (x+2-y)(x+2+y)=4=2.2=(-2)(-2)$
Đến đây là dạng pt tích cơ bản rồi, bạn chỉ cần xét các trường hợp cụ thể để tìm ra $x,y$ thôi.
Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)
<=> \(8x^3+8x^3-16x^3+16xy=32\)
<=> \(16xy=32\)
<=> \(xy=2\)
=> x, y cùng dấu (vì \(xy>0\))
Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)
(x+căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015
<=>(x+căn bậc 2 của (2015+x2))(x-căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015(x-căn bậc 2 của(2015+x2)
<=>x=y+căn bậc 2 của(2015+x2)-căn bậc 2 của (2015+y2) (1)
Tương tự: y=x+ căn bậc 2 của (2015+y2)-căn bậc 2 của (2015+x2) (2)
Cộng 2 vế của (1) và (2)
=> x+y=0 <=> y=-x
Thay vào pt ta được:
3x2+8x2+12x2=23 <=> 23x2
<=>x=1 hoặc x=-1
<=>y=-1 hoặc y=1
\(4x^2+12xy+9y^2-8\left(2x+3y\right)-y^2+2y-1+15=0\)
\(\Leftrightarrow\left(2x+3y\right)^2-8\left(2x+3y\right)+16-\left(y-1\right)^2=1\)
\(\Leftrightarrow\left(2x+3y-4\right)^2-\left(y-1\right)^2=1\)
\(\Leftrightarrow\left(2x+4y-5\right)\left(2x+2y-3\right)=1\)
TH1: \(\left\{{}\begin{matrix}2x+4y-5=1\\2x+2y-3=1\end{matrix}\right.\) \(\Rightarrow x;y=...\)
TH2: \(\left\{{}\begin{matrix}2x+4y-5=-1\\2x+2y-3=-1\end{matrix}\right.\) \(\Rightarrow x;y=...\)