K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)

<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)

<=> \(8x^3+8x^3-16x^3+16xy=32\)

<=> \(16xy=32\)

<=> \(xy=2\)

=> x, y cùng dấu (vì \(xy>0\))

Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)

23 tháng 9 2018

\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)

\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16xy=32\)

\(\Leftrightarrow16xy=32\)

\(\Leftrightarrow xy=2\)

Do \(x;y\in Z;xy=2\) nên ta được các cặp số x ; y thỏa mãn :

\(\left(x,y\right)\in\left\{\left(1,2\right);\left(2,1\right);\left(-1,-2\right);\left(-2,-1\right)\right\}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4