So sánh:
a) 2^500 và 5^200
b) 2^722 và 3^183
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!
a)\(2,4 =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)
Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).
b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} = - \frac{{10}}{{25}}\)
Ta có: -3 > -10 nên \( - \frac{3}{{25}} > - \frac{{10}}{{25}}\) nên \( - 0,12 > - \frac{2}{5}\).
c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).
Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} > - 0,3.\)
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
a) Ta có:
\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)
Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)
b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3
c) Ta có:
\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)
Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)
\(\left(-2\sqrt{2}\right)^2=8\)
mà 7<8
nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)
\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)
mà 220<270
nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)
hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
a) Ta có: 2500 = (25)100 = 32100
5200= (52)100= 25100
Vì 32100>25100 => 2500 > 5200
a)2^500 và 5^200
2^500<5^200
b)2^722 và 3^183
2^722>3^183