K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Tham khảo nha ông:

undefined

NV
6 tháng 10 2021

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

24 tháng 8 2016

1/ a/ x = 1/2, y = -1

b/ x = -1/2 ; y = 1

9 tháng 11 2016

Giả sử \(x,y,z\in Q,x=\frac{a}{b},b>0,y=\frac{c}{d},d>0,z=\frac{h}{g},g>0.\)

a) Nếu \(x=y\), tức là \(\frac{a}{b}=\frac{c}{d}\), thì ta suy ra \(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\left(1\right)\)

Xét \(x+z=\frac{a}{b}+\frac{h}{g}=\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}\left(2\right)\)

Thay kết quả \(\left(1\right)\) vào vế phải của \(\left(2\right)\) ta được:

\(x+z=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{c}{d}+\frac{h}{g}\Rightarrow x+z=y+z\)

b) Ngược lại, nếu \(x+z=y+z,\) tức là \(\frac{a}{b}+\frac{h}{g}=\frac{c}{d}+\frac{h}{g},\) thì ta suy ra

\(\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}\)

\(\Rightarrow\frac{a.d.g+b.d.h}{b.d.g}=\frac{b.c.g+b.d.h}{b.d.g}\)

\(\Rightarrow a.d.g+b.d.h=b.c.g+b.d.h\left(3\right)\)

Theo luật đơn giản ước của phép cộng các số nguyên, từ đẳng thức \(\left(3\right)\) ta có: \(a.d.g=b.c.g\). Do đó:

\(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\)

Suy ra \(\frac{a}{b}=\frac{c}{d}\)

 

9 tháng 11 2016

Ta có :

(+) \(x=y\)

\(\Rightarrow\begin{cases}x+z=x+z\\y+z=x+z\end{cases}\)

=> x+z=y+z

(+) x+z=y+z

\(\Rightarrow x+z-z=y+z-z\)

=> x = y

5 tháng 7 2017

Ace Legona giúp vs ạ bài 1 thui cx đc

DD
27 tháng 5 2021

\(x^2-xy+y^2=\frac{1}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\)

\(\Rightarrow\sqrt{x^2-xy+y^2}=\sqrt{\frac{1}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2}\ge\sqrt{\frac{1}{4}\left(x+y\right)^2}=\frac{1}{2}\left(x+y\right)\)

Tương tự ta cũng có: \(\sqrt{x^2-xz+z^2}=\frac{1}{2}\left(x+z\right)\)

Suy ra \(\sqrt{x^2-xy+y^2}+\sqrt{x^2-xz+z^2}\ge\frac{1}{2}\left(2x+y+z\right)=1\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{2}\).