Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
=> 1/xy + 1/yz + 1/xz = 0
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
\(\left(x+y+z\right)⋮6\Rightarrow\left(x+y+z\right)⋮2\)
x, y, z không thể đồng thời cả 3 số cùng lẻ ; nghĩa là phải có 1 số chẵn
\(\left\{{}\begin{matrix}\left(x.y.z\right)⋮2\Rightarrow3\left(xyz\right)⋮6\\\left(\left(x-y\right)\left(x+y\right)\left(x+y+z\right)\right)⋮6\end{matrix}\right.\)
\(\Rightarrow A⋮6\Rightarrow dpcm\)
Ace Legona giúp vs ạ bài 1 thui cx đc