Cho hình bình hành ABCD, M là trung điểm của BC. Gọi N là giao điểm của AM và BD, P là giao điểm của CN với AD. Chứng minh AP = AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)
M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC
nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)
b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)
Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)
\(\Rightarrow NI=DK\)(2)
(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)
a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành AD = BC AN = ND = BM = MC
Và AD // BC=> ND // BM
Xét tứ giác MBND, ta có:
ND // BM
ND = BM
Tứ giác MBND là hình bình hành.
NB // MD . Mà NB giao với MD = {K}=> B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
=>Tứ giác MBKD là hình thang ( đpcm ).
b)
Vì P thuộc BK, Q thuộc MD mà BK // MD QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC PM // QN (2)
Từ (1), (2)=> PMQN là hình bình hành. ( 3 )
Theo CM ở câu a) ANMB là hình thoi ( có 4 cạnh bằng nhau )
AM vuông góc với BN. (4)
Từ (3), (4) PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o thì tứ giác ANMB là hình vuông=> AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=> PN = PM
Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )
của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak |