Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(DN=NC=\dfrac{DC}{2}\)(N là trung điểm của DC)
mà AB=DC(Hai cạnh đối trong hình bình hành ABCD)
nên AM=MB=DN=NC
Xét tứ giác AMCN có
AM//CN(AB//CD, M∈AB, N∈CD)
AM=CN(cmt)
Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AMND có
AM//ND(AB//CD, M∈AB, N∈CD)
AM=ND(cmt)
Do đó: AMND là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: \(AB=2\cdot AM\)(M là trung điểm của AB)
mà \(AB=2\cdot AD\)(gt)
nên AM=AD
Hình bình hành AMND có AM=AD(cmt)
nên AMND là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AN và DM vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AN⊥DM(đpcm)
c) Ta có: AN và DM vuông góc với nhau tại trung điểm của mỗi đường(cmt)
mà AN cắt DM tại E(gt)
nên E là trung điểm chung của AN và DM
Xét tứ giác BMNC có
BM//NC(AB//CD, M∈AB, N∈CD)
BM=NC(cmt)
Do đó: BMNC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo BN và MC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà BN cắt MC tại F(gt)
nên F là trung điểm chung của MC và BN
Ta có: \(EN=\dfrac{AN}{2}\)(E là trung điểm của AN)
\(MF=\dfrac{MC}{2}\)(F là trung điểm của MC)
mà AN=MC(Hai cạnh đối trong hình bình hành AMCN)
nên EN=MF
Ta có: AN//MC(Hai cạnh đối trong hình bình hành AMCN)
mà E∈AN(cmt)
và F∈MC(cmt)
nên EN//MF
Ta có: AN⊥MD(cmt)
mà AN cắt MD tại E(gt)
nên NE⊥ME tại E
hay \(\widehat{MEN}=90^0\)
Xét tứ giác EMFN có
EN//MF(cmt)
EN=MF(cmt)
Do đó: EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành EMFN có \(\widehat{MEN}=90^0\)(cmt)
nên EMFN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒EF=MN(Hai đường chéo trong hình chữ nhật EMFN)
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành