K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔOPQ có 

I là trung điểm của PQ

IN//OP

Do đó: N là trung điểm của OQ

Xét ΔOPQ có 

I là trung điểm của PQ

IM//OQ

Do đó: M là trung điểm của OP

Xét ΔMPI và ΔNQI có 

MP=NQ

\(\widehat{P}=\widehat{Q}\)

PI=QI

Do đó: ΔMPI=ΔNQI

Suy ra: IM=IN

hay ΔIMN cân tại I

2: Ta có: OM=ON

nên O nằm trên đường trung trực của MN(1)

Ta có: IM=IN

nên I nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OI là đường trung trực của MN

Xét ΔMNQ và ΔNMP có

MN chung

NQ=MP

MQ=NP

=>ΔMNQ=ΔNMP

=>góc OMN=góc ONM

=>OM=ON 

OM+OP=MP

ON+OQ=NQ

mà MP=NQ và OM=ON

nên OP=OQ

21 tháng 11 2015

tự vẽ hình

a) Tam giác MOQ và PON có: OM=OP ; OQ =ON ; góc O chung => tgiac MOQ=PON (c-g-c)

 => MQ = PN

b) Theo a) => Góc Q = N  (1)

                      góc OPN = OMQ => IPQ = IMN ( cùng bù với 2 góc bằng nhau) (2)

Mặt khác ON -OM =OQ -OP => PQ =MN (3)

1;2;3 => Tam giác IMN = IPQ (g-c-g) => IM =IP ; IN =IQ

c) theo b) => IM = IP => tam giác OIM = OIP ( c-c-c)=> Góc MOI =POI hay OI là phân giác xOy

d) vì OP = OM và IP =IM => OI là đường trung trực của MP

e) tương tự d) => OI là trung trực NQ  => OI vuông góc NQ ; OI vuông góc với MP => NQ // MP

 

Chọn B

20 tháng 5 2017
  1. a)xét tg MOQ và tg NOP có: -góc Ở chung; OM=ON(giả thiết);OQ=OP(giả thiết)=>tg MOQ=tgNOP(cạnh.góc cạnh)
  2. b) ta có:QP (cạnh chung);MQ=NP(giả thiết);góc M=góc N(tg MOQ=tgNOP)=>tg MPQ=tg NQP
20 tháng 5 2017
  1. c) MN//PQ( vị trí so le trong)

d) vì MN//PQ(cmt)=>MNPQ là ht cân

17 tháng 8 2021

d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80

 

17 tháng 8 2021

giúp mình giải câu d thôi cũng đc

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC