K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Hạng tử bậc cao nhất của thương là \(x^3:x^2=x\)

Hệ số tự do của thương là \(-6:2=-3\)

Vậy đa thức thương của đa thức x+ ax2 + bx - 6  chia hết cho x2 - x + 2 có dạng x-3

Ta có: x+ ax2 + bx - 6 = (x2 - x + 2)(x-3)

\(\Leftrightarrow x^3+ax^2+bx-6=x^3-4x^2+5x-6\)

Đồng nhất hệ số , ta được: \(\hept{\begin{cases}ax^2=-4x^2\\bx=5x\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-4\\b=5\end{cases}}\)

19 tháng 4 2021

làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!

:((((((((((

 

19 tháng 4 2021

Do x = -1 là nghiệm của phương trình

⇒ a - b - 1 - 2 = 0

⇒ a - b = 3

Tương tự ta có a + b = 1

Vậy a = 2 ; b = -1 

 

30 tháng 8 2019

bạn ghi lại đề đi mình chả hiểu cái mô tê gì cả

14 tháng 8 2021

Mình cảm ơn ạ

22 tháng 3 2016

làm từ nãy tới giờ bó tay rùi!

22 tháng 3 2016

Phân tích đa thức x2+ x-6 = (x-2)(x+3)

Gọi thương của phép chia f(x) cho đa thức trên là Q(x)

Ta có f(2)= 8+ 2a+b=0

Suy ra 2a+b=-8

lại có f(-3)= -27+ 3a+b=0

Suy ra 3a+b=27

đến đây ta dùng máy tính giải hệ ta được a=35;b=-78

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
2 tháng 8 2019

Chọn A

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$

$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$