Viết các số có 6 chữ số sao cho mỗi số chỉ được lập từ 3 chữ số 0 và 3 chữ số 1?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi d = ƯCLN của tất cả các số lập được từ 6 chữ số trên
=> Hiệu hai số bất kì trong đó cũng chia hết cho d
Ta có: 123465 - 123456 = 9 => 9 chia hết cho d => d có thể bằng 1; 3; 9
Mà Tổng các chữ số của mỗi số lập được đều bằng 1 + 2+ 3+ 4+5+6 = 21 => Các số đó chia hết cho 3, không chia hết cho 9
=> d = 3
Vậy ƯCLN của các số lập được bằng 3
2)
+) Nếu các chữ số a; b đã cho đều khác 0 thì từ các chữ số a; b; 5; 8 ta sẽ lập được 24 số, vì
- Có 4 cách chọn chữ số hàng nghìn
- Có 3 cách chọn chữ số hàng trăm
- Có 2 cách chọn chữ số hàng chục
- Có 1 cách chọn chữ số hàng đơn vị
=> có tất cả là: 4 x 3 x 2 x 1 = 24 số
Theo đề bài, chỉ lập được 18 số nên trong a; b có 1 chữ số bằng 0. Coi b = 0
+) Ta lập được 18 số là:
a058; a085; a508; a580; a850;a805
50a8;508a; 580a;58a0;5a80;5a08
85a0;850a;80a5;805a;8a50;8a05
Trong 18 số trên, ta thấy: Chữ số a; 5; 8 đều xuất hiện ở hàng nghìn 6 lần; và a; 0;5;8 đều xuất hiện ở mỗi hàng trăm; chục ; đơn vị 4 lần
Theo phân tích cấu tạo số ta có: Tổng 18 số trên là:
(a + 5 + 8) x 6 x 1000 + (a + 0 + 5 + 8) x 4 x 100 + (a + 0 + 5 + 8) x 4 x 10 + (a + 0 + 5 + 8) x 4 x 1 = (a+13) x 6444
Theo bài cho ta có: (a+13) x 6444 = 90 216
=> a+ 13 = 90 216 : 6444 = 13 => a = 1
Vậy a = 1; b = 0 (hoặc a = 0 ; b = 1)
mỗi số có 6 lần giá trị nghìn và 2 lần giá trị trăm, chục, đơn vị
ta có số 5 và 8 là các giá trị đã biết
5=
(6 x 5000)+(2 x 500)+(2 x 50)+(2 x 5)=31110
tương tự với 8
8=49776
49776+31110=80886
theo đề bài tổng là 90216
90216 - 80886= 9330
=> (6 x 1000)+(2 x 100)+(2 x 10)+(2 x 1)=6222
vậy a và b không lớn hơn 1
0= 3108
6222+3108 = 9330
=> a=0 b=1
Bài 6
Chọn chữ số 1 ở hàng chục nghìn ta lập được 24 số
Tương tự nên ta lập được
24 x 5 = 120 (số)
Tổng là:
(1 + 2 + 3 + 4 + 5) x 10000 x 24 + (1 + 2 + 3 + 4 + 5) x 1000 x 24 + (1 + 2 + + 3 + 4 + 5) x 100 x 24 + (1 + 2 + 3 + 4 + 5) x 10 x 24 + (1 + 2 + 3 + 4 + 5) x x 1 x 24
= (1 + 2 + 3 + 4 + 5) x 24 x 11111
= 15 x 24 x 11111 = 3999960
Bài 6:
Ta lập được 3 số 334, 343, 433
Tổng các số:
(3 + 3 + 4) x 100 x 1 + (3 + 3 + 4) x 10 + (3 + 3 + 4) x 1
= 10 x (10 + 10 + 1)
= 10 x 111 = 1110
.
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
Chọn C
Ta có thể chia làm bốn trường hợp sau
TH1: Số 5 có mặt một lần, số 6 có mặt một lần.( Bao gồm các khả năng sau: mỗi số có mặt một lần hoặc một số 5, một số 6 hai số 3 hoặc một số 5, một số 6 hai số 4)
Số các số được tạo thành là:
TH2: Số 5 có mặt một lần, số 6 không có mặt.
Số các số được tạo thành là:
TH3: Số 6 có mặt một lần, số 5 không có mặt.
Số các số được tạo thành là:
TH4: Số 5 và số 6 không có mặt.( Số 3 và số 4 mỗi số có mặt đúng hai lần)
Số các số được tạo thành là:
Vậy có thể lập được 102 số thỏa mãn đề bài.
`100011;100101;101001;110001;100110;101010;110010;101100;110100`
và 111000