so sánh
1992 x 1995 với 1993 x 1994
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1993\times1993\)
\(A=1993^2\)
Áp dụng HĐT \(a^2-b^2=\left(a-b\right)\left(a+b\right)\), ta có:
\(B=1992\times1994\)
\(B=\left(1993-1\right)\left(1993+1\right)\)
\(B=1993^2-1^2\)
\(B=1993^2-1\)
Mà 19932 > 19932 - 1
\(\Rightarrow A>B\)
A = \(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) +\(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\) + \(\dfrac{4}{9\times11\times13}\)
A = \(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+...+\(\dfrac{1}{9\times11}\)-\(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{1\times3}\) - \(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{3}-\dfrac{1}{143}\)
A = \(\dfrac{140}{429}\)
Bài 2:
A = \(\dfrac{1991}{1990}\) x \(\dfrac{1992}{1991}\) x \(\dfrac{1993}{1992}\) x \(\dfrac{1994}{1993}\) x \(\dfrac{1995}{997}\)
A = \(\dfrac{1994\times1995}{1990\times997}\)
A = \(\dfrac{997\times2\times5\times399}{5\times2\times199\times997}\)
A = \(\dfrac{399}{199}\)
Ta lấy các chữ số tận cùng của mỗi số nhân với nhau:
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 362880
Vậy tích trên có tận cùng là chữ số 0
\(\dfrac{x-1}{1992}+\dfrac{x-2}{1993}=\dfrac{x-3}{1994}+\dfrac{x-4}{1995}\)
\(\Rightarrow\left(\dfrac{x-1}{1992}+1\right)+\left(\dfrac{x-2}{1993}+1\right)=\left(\dfrac{x-3}{1994}+1\right)+\left(\dfrac{x-4}{1995}+1\right)\)
\(\Rightarrow\left(\dfrac{x-1+1992}{1992}\right)+\left(\dfrac{x-2+1993}{1993}\right)=\left(\dfrac{x-3+1994}{1994}\right)+\left(\dfrac{x-4+1995}{1995}\right)\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}=\dfrac{x+1991}{1994}+\dfrac{x+1991}{1995}\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}-\dfrac{x+1991}{1994}-\dfrac{x+1991}{1995}=0\)
\(\Rightarrow\left(x+1991\right)\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)=0\)
\(\Rightarrow\left(x+1991\right)=0\) ( vì \(\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)\ne0\)
\(\Rightarrow x=-1991\)
`1992 . 1995`
`= (1993 - 1) . (1994 + 1) `
`= 1993 . 1994 -1994 + 1993 - 1`
`= 1993 . 1994 - 2 < 1993 . 1994`
Vậy `1992 . 1995 < 1993 . 1994`
Ta có:
\(1992\times1995\\ =1992\times\left(1994+1\right)\\ =1992\times1994+1992\\ =1992\times1994+1994-2\\ =1994\times\left(1992+1\right)-2\\ =1993\times1994-2\)
Vì \(1993\times1994-2< 1993\times1994\) nên:
\(1992\times1995< 1993\times1994\)
Vậy \(1992\times1995< 1993\times1994\)