Tìm GTNN của đa thức 4x2+8x-5
giúp nhanh vs nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại đề, GTLN và GTNN của biểu thức \(\dfrac{4x^2-8x+5}{x^2+1}\) rất xấu, và phải dùng kiến thức lớp 9 để tìm
vâng bn có thể lm kiến thức lớp 9 về delta để giải hộ m dc ko akk
\(4x^2-8x+25\)
\(=\left(4x^2-8x+4\right)+21\)
\(=\left(2x-2\right)^2+21\)
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\Rightarrow\) giá trị nhỏ nhất của biểu thức trên là 21
Dấu " = " xảy ra khi : \(2x-2=0\Leftrightarrow x=1\)
Vậy ...
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
A = 2.(x^2-8x+22)-1/x^2-8x+22 = 2 - 1/x^2-8x+22
Có : x^2-8x+22 = (x^2-8x+16)+6 = (x-4)^2+6 >= 6 => 1/x^2-8x+22 < = 1/6
=> A = 2 - 1/x^2-8x+22 >= 2-1/6 = 11/6
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy GTNN của A = 11/6 <=> x=4
k mk nha
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
=(2x+2)2-9
vậy GTNN là -9
mình làm hơi tắt nhưng chắc bạn hiểu mà !!!
ok tôi cũng vừa nghĩ ra đc :))