Cứu mik:
\(73\cdot\left(8-59\right)-59\cdot\left(8-73\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`
`= -9 + [-54 \div (-256 + 7) * 4]`
`= -9 + [-54 \div (-249) * 4]`
`= -9 + (18/83 * 4)`
`= -9 + 72/83`
`= -675/83`
______
`31 * (-18) + 31 * (-81) - 31`
`= 31 * (-18 - 81 - 1)`
`= 31 * (-100)`
`= -3100`
___
`(-12) * 47 + (-12) * 52 + (-12)`
`= (-12) * (47 + 52 + 1)`
`= (-12) * 100`
`= -1200`
___
`13 * (23 + 22) - 3 * (17 + 28)`
`= 13 * 45 - 3 * 45`
`= 45 * (13 - 3)`
`= 45 * 10`
`= 450`
____
`-48 + 48 * (-78) + 48 * (-21)`
`= 48 * (-1 - 78 - 21)`
`= 48 * (-100)`
`= -4800`
\(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+8-x+2\right)^2\)
=100
\(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2=\left(x+8-x+2\right)^2\)
\(=10^2=100\)
\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow B=2^{64}-1-2^{64}=-1\)
a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)
Rút gọn: \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)
\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)
b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)
\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)
= (28 - 1)(28 + 1)(216 + 1)
= (216 - 1)(216 + 1)
= 232 - 1
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
\(a.\)
\(-\dfrac{5}{9}\cdot\dfrac{12}{35}=\dfrac{\left(-5\right)\cdot12}{9\cdot35}=\dfrac{-60}{315}=-\dfrac{4}{21}\)
\(b.\)
\(\left(-\dfrac{5}{8}\right)\cdot-\dfrac{6}{55}=\dfrac{\left(-5\right)\cdot\left(-6\right)}{8\cdot55}=\dfrac{30}{440}=\dfrac{3}{44}\)
\(c.\)
\(\left(-7\right)\cdot\dfrac{2}{5}=-\dfrac{14}{5}\)
\(d.\)
\(-\dfrac{3}{8}\cdot\left(-6\right)=\dfrac{-3\cdot\left(-6\right)}{8}=\dfrac{18}{8}=\dfrac{9}{4}\)
=73.8-73.59 - 59.8 + 59.73
=584 - 4307 - 472 + 4307
=-7323 + 3835
=-3488
$73.(8-59)-59.(8-73)$
$=73.8-73.59-59.8+59.73$
$=73.8-59.8$
$=8.(73-59)$
$=8.14=112$