Tìm n thuộc N* và \(n^2\)+4 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+4=n^2-1+5⋮n+1\)
mà \(n^2-1=\left(n-1\right)\left(n+1\right)⋮n+1\)
do đó: \(5⋮n+1\)
ta có bảng sau:
n+1 | 1 | 5 |
n | 0(loại) | 4(thỏa mãn) |
vậy n=4
n2 + 4 ⋮ n + 1
<=> n2 - 1 + 5 ⋮ n + 1
<=> (n - 1)(n + 1) + 5 ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 ∈ Ư(5) = { ± 1; ± 5 }
Ta có bảng sau :
n + 1 | - 5 | - 1 | 1 | 5 |
n | - 6 | - 2 | 0 | 4 |
Vậy n = { - 6; - 2; 0; 4 }
\(n^2+4=n^2+n-n+4=n\left(n+1\right)-\left(n-4\right)\)
Vì \(n+1⋮n+1\Rightarrow n\left(n+1\right)⋮n+1\)
\(\Rightarrow\)Để \(n\left(n+1\right)-\left(n-4\right)⋮n+1\)thì \(n-4⋮n+1\)
Ta có: \(n-4=\left(n+1\right)-5\)\(\Rightarrow\left(n+1\right)-5⋮n+1\)
Vì \(n+1⋮n+1\)\(\Rightarrow5⋮n+1\)
Vì \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
Ta có bảng giá trị
n+1 | 1 | 5 |
n | 0 | 4 |
Vậy \(n\in\left\{0;4\right\}\)
n2 + 4 chia hết cho n + 1
=> n2 - 1 + 5 chia hết cho n + 1
=> ( n - 1 )( n + 1 ) + 5 chia hết cho n + 1
Vì ( n - 1 )( n + 1 ) chia hết cho n + 1 với mọi n thuộc Z
Để ( n - 1 )( n + 1 ) + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
Hay n + 1 thuộc Ư( 5 ) = { 1 ; 5 ; - 1 - 5 }
=> n = { 0 ; - 2 ; 4 ; - 6 }. Mà n thuộc N* nên n = 4
Vậy với n = 4 thì n2 + 4 chia hết cho n + 1
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
d) n+6 chia hết cho n+2
n+6 = (n+2) + 4
mà n+2 chia hết cho n +2
=> 4 chia hết cho n + 2
=> n + 2 là Ư(4) = ( 1;2;4)
th1; n + 2 = 1
=> n = - 1
th2; n+2=2
=> n= 0
th3: n=4
=> n + 2 = 4
=> n = 2
e)
2n+3 chia hết cho n - 2
2n+3 = (2n - 4) + 7
= 2(n - 2) +7
mà 2(n - 2) chia hết cho n- 2
=> 7 chia hết cho n - 2
=> n - 2 = Ư(7) = (1;7)
th1: n - 2 = 1
=> n = 3
th2 : n- 2 = 7
=> n =9
n2 + 4 chia hết cho n + 1
=> n2 - 1 + 5 chia hết cho n + 1
=> ( n - 1 )( n + 1 ) + 5 chia hết cho n + 1
Vì ( n - 1 )( n + 1 ) chia hết cho n + 1 với mọi n thuộc Z
Để ( n - 1 )( n + 1 ) + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
Hay n + 1 thuộc Ư( 5 ) = { 1 ; 5 ; - 1 - 5 }
=> n = { 0 ; - 2 ; 4 ; - 6 }. Mà n thuộc N* nên n = 4
Vậy với n = 4 thì n2 + 4 chia hết cho n + 1