cho A= 5^0+5^1+...+5^2011
Tìm số dư của A chia cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)=\)
\(=31\left(1+5^3+5^6+5^9+...+5^{30}\right)⋮31\)
A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)
A = 50 +51 +( 52 + 53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )
A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6
:)
\(A=\left(1+5+5^2\right)+....+\left(5+1+5^2\right).5^{97}+5^{99}\)\(A=31+....+5^{97}.31+5^{99}\)
ta thấy \(5^{99}=125^{33}\)
mà 125 chia 31 dư 1
suy ra 125^33 chia 31 dư 1
suy ra 5^99 chia 31 dư 1
Vậy A chia 31 dư 1
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+.....+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31.1+31.5^3+......+31.5^{30}\)
\(A=31.\left(1+5^3+......+5^{30}\right)\)\
Vậy A chia hết cho 31 hay chia 31 dư 0
A= 50+51+52+..........+52002
= 1+5+52+..........+ 52002
= 1+ (5+52+53)+.....+ ( 52000+52001+52002)
= 1+ 5( 1+5+52) + .....+52000( 1+5+52)
= 1+ (5+...+52000)( 1+5+52)
= 1+ (5+....+52000)31 chia 31 dư 1