K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

\(\hept{\begin{cases}x-y+1=0\\2x^2-xy+3y^2-7x-12y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\2x^2-xy+3y^2-7x-12y+1=0\end{cases}}\)

Thế phương trình trên vào phương trình dưới, ta có:

\(2\left(y-1\right)^2-\left(y-1\right)y+3y^2-7\left(y-1\right)-12y+1=0\)\(\Leftrightarrow2y^2-4y+2-y^2+y+3y^2-7y+7-12y+1=0\)

\(\Leftrightarrow4y^2-22y+10=0\Leftrightarrow\orbr{\begin{cases}y=5\\y=\frac{1}{2}\end{cases}}\)

Với y = 5 thì x = 5 - 1 = 4

Với \(y=\frac{1}{2}\Rightarrow x=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy hệ có 2 nghiệm \(\left(4;5\right)\) và \(\left(-\frac{1}{2};\frac{1}{2}\right)\)

15 tháng 10 2017

Thế y = x + 1 vào phương trình phía dưới.

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

11 tháng 7 2018

Lấy \(PT\left(2\right)-PT\left(1\right)\) ta được :

\(x^4+y^2+2x^2y-x^2-y-x^3y-xy^2=0\)

\(\Leftrightarrow\left(x^2+y\right)^2-\left(x^2+y\right)-xy\left(x^2+y\right)=0\)

\(\Leftrightarrow\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)

\(\Leftrightarrow\left(x^2+y\right)\left[\left(x-1\right)\left(x+1\right)-y\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x^2+y\right)\left(x-y+1\right)\left(x-1\right)=0\)

Xét các TH xong thay vô

11 tháng 7 2018

Xét sao vậy?

Dùng cái đầu đi ạ