\(\hept{\begin{cases}x-y+1=0\\2x^2-xy+3y^2-7x-12y+1=0\end{cases}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
11 tháng 7 2018
Lấy \(PT\left(2\right)-PT\left(1\right)\) ta được :
\(x^4+y^2+2x^2y-x^2-y-x^3y-xy^2=0\)
\(\Leftrightarrow\left(x^2+y\right)^2-\left(x^2+y\right)-xy\left(x^2+y\right)=0\)
\(\Leftrightarrow\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)
\(\Leftrightarrow\left(x^2+y\right)\left[\left(x-1\right)\left(x+1\right)-y\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x^2+y\right)\left(x-y+1\right)\left(x-1\right)=0\)
Xét các TH xong thay vô
\(\hept{\begin{cases}x-y+1=0\\2x^2-xy+3y^2-7x-12y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\2x^2-xy+3y^2-7x-12y+1=0\end{cases}}\)
Thế phương trình trên vào phương trình dưới, ta có:
\(2\left(y-1\right)^2-\left(y-1\right)y+3y^2-7\left(y-1\right)-12y+1=0\)\(\Leftrightarrow2y^2-4y+2-y^2+y+3y^2-7y+7-12y+1=0\)
\(\Leftrightarrow4y^2-22y+10=0\Leftrightarrow\orbr{\begin{cases}y=5\\y=\frac{1}{2}\end{cases}}\)
Với y = 5 thì x = 5 - 1 = 4
Với \(y=\frac{1}{2}\Rightarrow x=\frac{1}{2}-1=-\frac{1}{2}\)
Vậy hệ có 2 nghiệm \(\left(4;5\right)\) và \(\left(-\frac{1}{2};\frac{1}{2}\right)\)
Thế y = x + 1 vào phương trình phía dưới.