K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6

\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)

\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)

Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\) 

\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)

\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)

\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)

Vậy: ...  

20 tháng 6

Ta có : 

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)

\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)

\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)

\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)

\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)

Vậy \(B>\dfrac{1}{2}\)

29 tháng 6 2023

a

ĐK: \(x\ne5\)

\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

b

ĐK: \(x\ne0;x\ne-1\)

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)

 

a: =>(x-5)/3=12/(x-5)

=>(x-5)^2=36

=>x-5=6 hoặc x-5=-6

=>x=11 hoặc x=-1

b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)

=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048

=>1/2-1/x+1=2023/4048

=>1/(x+1)=1/4048

=>x+1=4048

=>x=4047

c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)

\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)

d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)

hay \(x=\dfrac{2}{3}\)

28 tháng 8 2018

\(a.A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)

Để : \(A=\dfrac{2}{7}\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{7}\)

\(\Leftrightarrow x+\sqrt{x}-6=0\)

\(\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow x=4\left(TM\right)\)

\(b.A^2=\left(\dfrac{2}{x+\sqrt{x}+1}\right)^2=\dfrac{4}{\left(x+\sqrt{x}+1\right)^2}\left(1\right)\)

\(2A=2.\dfrac{2}{x+\sqrt{x}+1}=\dfrac{4}{x+\sqrt{x}+1}\left(2\right)\)

Mà : \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\left(3\right)\)

Từ \(\left(1;2;3\right)\Rightarrow2A\ge A^2\)

10 tháng 4 2021

a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)

Áp dụng bổ đề trên ta có:

\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)

 

10 tháng 4 2021

b)

TH1: x chẵn  mà x là số nguyên tố => x=2

=> y^2 = 117+4=121 => y=11 (thỏa mãn)

TH2:  x lẻ => x^2 lẻ  . Mà 117 lẻ

=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố

=> y=2 

=>x^2+117= 4=> x^2 = -113 (vô lý)

Vậy x=2;y=11

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0

19 tháng 2 2019

1 )Ta có :

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)

\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)

\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)

\(\Rightarrow3\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)

\(\Rightarrow x>\dfrac{4}{9}\)

2)

Giả sử

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)

=> \(3\sqrt{x}>x+\sqrt{x}+1\)

\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)

\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )

Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương

\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)

19 tháng 2 2019

câu 2 tớ nhầm chỗ kết luận, phải là :

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\le\dfrac{1}{3}\) nhé, chỗ dòng cuối cùng đấy, còn bên trên thì không ảnh hưởng gì cả

18 tháng 7 2023

giúp mình giải bài toán trên với. Mình cảm ơn rất nhiều

a: =>1/2x-3/4x=-5/6+7/3

=>-1/4x=14/6-5/6=3/2

=>x=-3/2*4=-6

b: =>4/5x-3/2x=1/2+6/5

=>-7/10x=17/10

=>x=-17/7

c: =>6/5x+6/20=6/5-1/3x

=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10

=>x=27/46

d: =>6x+3/2+4/5=1/2-2x

=>8x=1/2-3/2-4/5=-1-4/5=-9/5

=>x=-9/40

9 tháng 11 2021

a) \(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

b) \(=\dfrac{1}{x+2}+\dfrac{3}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\)

c) \(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{x^2-2xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

 

23 tháng 9 2023

a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)

  - \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) <   \(x\)   < - \(\dfrac{13}{5}\)\(\dfrac{21}{15}\)

   -  \(\dfrac{46}{3}\)     <  \(x\) < - \(\dfrac{13}{7}\) 

          \(x\) \(\in\) {-15; -14;-13;..; -2}

 

 

 

 

23 tháng 9 2023

a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)

Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)

Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)

Suy ra \(-15\le x\le-2\), x ϵ Z

b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)

Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)

Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)

Suy ra \(-1\le x\le0\), x ϵ Z