Số nào lớn hơn trong hai số sau:
a)3111và 1714
b)19920và 200315
c)3500và 7300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
a) \(20+30+40=90\)
b) hai số 11 và 12 có tổng là 23
c) hai số 44 và 45 có tổng lớn nhất trong bảng
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 1” là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 36” là biến cố không thể nên biến cố có xác suất là 0.
A là biến cố chắc chắn
=>P(A)=1
B là biến cố ko thể
=>P(B)=0
C={(3;1);(4;1);(4;2);(5;1);(5;2);(5;3);(6;1);(6;2);(6;3);(6;4)}
=>n(C)=10
=>P(C)=10/30=1/3
Biến cố D là biến cố chắc chăn
=>P(D)=1
E là biến cố ko thể
=>P(E)=0
n(F)=3*2=6
=>P(F)=6/30=1/5
a) Đúng. Dựa vào cách so sánh hai cung (SGK trang 68).
Chú ý: Khi ta nói hai cung bằng nhau, nghĩa là hai cung này so sánh được (tức chúng cùng nằm trong một đường tròn hoặc trong hai đường tròn bằng nhau). Do đó, theo cách so sánh hai cung đã biết thì hai cung bằng nhau thì số đo bằng nhau.
b) Sai. Nếu hai cung này nằm trong hai đường tròn có bán kính khác nhau thì ta không thể so sánh hai cung.
c) Sai. (Lí luận như câu b)
d) Đúng. (Lí luận như câu a)
Viết “bé hơn”; “lớn hơn” vào chỗ chấm thích hợp
Trong hai phân số có tử số bằng nhau, phân số nào có mẫu số bé hơn (lớn hơn) thì phân số đó lớn hơn (bé hơn) phân số kia
a) \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
\(\Rightarrow\)\(31^{11}< 2^{55}\)
\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(\Rightarrow\)\(17^{16}>2^{56}\)
Mà \(2^{55}< 2^{56}\)
\(\Rightarrow\)\(31^{11}< 17^{14}\)
b và c chứng minh tương tự