K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

a) \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)

\(\Rightarrow\)\(31^{11}< 2^{55}\)

\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)

\(\Rightarrow\)\(17^{16}>2^{56}\)

Mà \(2^{55}< 2^{56}\)

\(\Rightarrow\)\(31^{11}< 17^{14}\)

b và c chứng minh tương tự 

29 tháng 6 2021

a, Ta có : \(8>7\)

\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)

b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)

\(2003^{15}>2000^{15}=2^{60}.2^{45}\)

Thấy : \(45>40\)

\(\Rightarrow2000^{15}>200^{20}\)

\(\Rightarrow2003^{15}>199^{20}\)

c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)

\(8.101^3>9.101^2\)

\(\Rightarrow202^{303}>303^{202}\)

 

a) Ta có: \(2^{16}=2^{13}\cdot8\)

mà \(7< 8\)

nên \(7\cdot2^{13}< 2^{16}\)

b) \(199^{20}=1568239201^5\)

\(2003^{15}=8036054027^5\)

mà \(1568239201< 8036054027\)

nên \(199^{20}< 2003^{15}\)

c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}\)

mà \(202^3>303^2\)

nên \(202^{303}>303^{202}\)

24 tháng 4 2019

tôi biết

12 tháng 5 2017

 26 = 2.2.2.2.2.2 = 64; 82 = 8.8 = 64. Vậy 26=82

12 tháng 8 2019

53 = 5.5.5 = 125; 35 = 3.3.3.3.3 = 243. Vậy 53<35

Nhỏ hơn

@Nghệ Mạt

#cua

5 tháng 1 2018

24 = 16 ; 42 = 16

Nên 24 = 42

8 tháng 2 2018

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Vậy A > B

8 tháng 3 2017

210 = 1024

Vì 1024 > 100 nên 210 > 100

16 tháng 9 2019

23 = 8 ; 32 = 9

Vì 8 < 9 nên 23 < 32