Cho tam giác ABC có AM là đường trung tuyến, N là điểm trên đoạn thẳng AM . Gọi D là giao điểm của CN và AB , E là giao điểm của BN và AC . Chọn khẳng định đúng nhất. A. DE/ /BC B. AD/BD=AE/ CE . C. Cả A, B đều đúng. D. Cả A, B đều sai.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường thẳng đi qua A song song với BC lần lượt cắt CD và BE kéo dài tại B’ và C’.
Vì M là trung điểm BC nên BM = MC.
Vì AB’ // MC, áp dụng định lý Talet ta có: A N N M = A B ' M C (1)
Vì AC’ // BM, áp dụng định lý Talet ta có: A N N M = A C ' M B (2)
Từ (1) và (2) ta có: A B ' M C = A C ' B M
Ta có M là trung điểm BC => BM = MC => AB’ = AC’ (*)
Vì AB’ // BC, áp dụng định lý Talet ta có: A D D B = A B ' B C (**)
Vì AC’ // BC, áp dụng định lý Talet ta có: A E E C = A C ' B C (***)
Từ (*), (**) và (***) ta có:
A D D B = A B ' B C = A E E C = A C ' B C ⇒ A D D B = A E E C ⇔ A D B D = A E C E
hay DE // BC
Đáp án: C
a, Ta có:
góc DAB = góc EAC( Vì cùng phụ góc BAC)
AD= AC
AB=AE
Nên tam giác ABD = tam giác AEC
Vây BD = CEb,
Ta có: ACNB là hình bình hành nên góc ACN + góc BAC = 180độ (1)
Mặt khác ta có : 2( góc DAB +góc BAC) = 2. 90 độ = 180độ
Nên góc DAB + góc EAC + góc BAC + góc BAC = 180 độ
Suy ra DAE + BAC = 180 độ (2)
Từ (1) và (2) ta đc góc DAE = góc ACN
Mà AD = AC; AB= CN nên tam giác ADE = Tam giác cân
c, Ta có: góc NAC = góc ADE ( cmt )
Mà góc NAC + góc DAM = 90 độ nên ADE + góc DAM = 90 độ
Vậy DIA = 90 độ
Áp dụng pytago ta có:\(\frac{AD^2+IE^2}{DI^2+AE^2}=\frac{\left(AD^2+DI^2\right)+\left(AE^2-AI^2\right)}{DI^2+AE^2}=1\)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Kéo dài CD, BE sao cho chúng cắt đường thẳng song song với BC đi qua A lần lượt tại K, G.
Xét \(\Delta NMC\) có: \(AK//MC\text{ (}AK//BC;M\in BC)\)
\(\Rightarrow\dfrac{AN}{NM}=\dfrac{AK}{MC}\) (hệ quả đli Talet) (1)
Xét \(\Delta NMB\) có: \(AG//MB\text{ (}AG//BC;M\in BC)\)
\(\Rightarrow\dfrac{AN}{NM}=\dfrac{AG}{MB}\) (hệ quả đli Talet) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{AK}{MC}=\dfrac{AG}{MB}\)
Mà \(MB=MC\) (vì M là trung điểm BC) nên \(AK=AG\) (3)
Xét \(\Delta BDC\) có: \(AK//BC\Rightarrow \dfrac{AD}{BD}=\dfrac{AK}{BC}\) (hệ quả đli Talet) (4)
Xét \(\Delta CEB\) có: \(AG//BC\Rightarrow \dfrac{AE}{EC}=\dfrac{AG}{BC}\) (hệ quả đli Talet) (5)
Từ (3), (4) và (5) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\Rightarrow\dfrac{AD}{AD+BD}=\dfrac{AE}{AE+EC}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét \(\Delta ABC\) có: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (cmt) \(\Rightarrow DE//BC\) (đli Talet đảo)
\(\rightarrow\) Chọn C. Cả A và B đều đúng
$Toru$