Tính:
S=\(\sqrt{x+1}\)+\(\sqrt{x+2}\)+\(\sqrt{x+3}\)+\(\sqrt{x+4}\)+...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`P=(x+2\sqrtx-11)/(x+4sqrtx+3)+(sqrtx-1)/(sqrtx+3)-(sqrtx-3)/(sqrtx+1)`
`đkxđ:x>=0`
`P=(x+2sqrtx-11+(sqrtx-1)(sqrtx+1)-(sqrtx-3)(sqrtx+3))/(x+4sqrtx+3)`
`=(x+2sqrtx-11+x-1-x+9)/(x+4sqrtx+3)`
`=(x+2sqrtx-3)/(x+4sqrtx+3)`
`=((sqrtx+1)(sqrtx-3))/((sqrtx+1)(sqrtx+3))`
`=(sqrtx-3)/(sqrtx+3)`
`2)x=3-2sqrt2=(sqrt2-1)^2`
`=>P=(sqrt2-1-3)/(sqrt2-1+3)`
`=(sqrt2-4)/(sqrt2+2)`
`=-(4-sqrt2)(2-sqrt2)`
`=-(8-6sqrt2+2)`
`=-10+6sqrt2`
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
a) \(M=\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{4}+1}{\sqrt{4}-1}=\dfrac{2+1}{2-1}=3\)
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)
Bạn xem lại đề bài 1 và 2.b nhé !
2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)
\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)
\(A=5\sqrt{2}-3-5\sqrt{2}-1\)
\(A=-4\)
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn!
Còn thiếu dữ liệu em nhé.