Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để 2 phương trình mx+7=6 và x/2 +m=1 có nghiệm bằng nhau
Ta có pt(1): \(mx+7=6\left(m\ne0\right)\)
\(\Leftrightarrow mx=6-7\)
\(\Leftrightarrow mx=-1\)
\(\Leftrightarrow x=-\dfrac{1}{m}\)
pt(2): \(\dfrac{x}{2+m}=1\left(m\ne-2\right)\)
\(\Leftrightarrow x=1\cdot\left(2+m\right)=m+2\)
Vì 2 pt có 2 nghiệm bằng nhau nên ta có:
\(-\dfrac{1}{m}=m+2\)
\(\Leftrightarrow-1=m\left(m+2\right)\)
\(\Leftrightarrow-1=m^2+2m\)
\(\Leftrightarrow m^2+2m+1=0\)
\(\Leftrightarrow\left(m+1\right)^2=0\)
\(\Leftrightarrow m+1=0\)
\(\Leftrightarrow m=-1\left(tm\right)\)
Vậy: ...
Ta có pt(1): \(mx+7=6\left(m\ne0\right)\)
\(\Leftrightarrow mx=6-7\)
\(\Leftrightarrow mx=-1\)
\(\Leftrightarrow x=-\dfrac{1}{m}\)
pt(2): \(\dfrac{x}{2+m}=1\left(m\ne-2\right)\)
\(\Leftrightarrow x=1\cdot\left(2+m\right)=m+2\)
Vì 2 pt có 2 nghiệm bằng nhau nên ta có:
\(-\dfrac{1}{m}=m+2\)
\(\Leftrightarrow-1=m\left(m+2\right)\)
\(\Leftrightarrow-1=m^2+2m\)
\(\Leftrightarrow m^2+2m+1=0\)
\(\Leftrightarrow\left(m+1\right)^2=0\)
\(\Leftrightarrow m+1=0\)
\(\Leftrightarrow m=-1\left(tm\right)\)
Vậy: ...