K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6

\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x:\left(x+1\right)}\) = \(\dfrac{2011}{2013}\)

\(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x}:\left(x+1\right)\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ... + \(\dfrac{2}{2x\times\left(x+1\right)}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\) + \(\dfrac{1}{4\times5}\) + ... + \(\dfrac{1}{x\times\left(x+1\right)}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)

  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\)  - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)

  \(\dfrac{1}{2}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2011}{2013}\) \(\times\) \(\dfrac{1}{2}\)

      \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2}\) - \(\dfrac{2011}{2013\times2}\) 

      \(\dfrac{1}{x+1}\)  = \(\dfrac{2013-2011}{2\times2013}\)

        \(\dfrac{1}{x+1}\) = \(\dfrac{2}{2\times2013}\)

          \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2013}\)

              \(x\) + 1 = 2013 

              \(x\) = 2013 - 1

                \(x\) = 2012

AH
Akai Haruma
Giáo viên
9 tháng 6

Lời giải:
$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x(x+1)}=\frac{2011}{2013}$

$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2011}{2013}$

$\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x(x+1)}=\frac{2011}{2013}$

$2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{x+1-x}{x(x+1)}\right)=\frac{2011}{2013}$

$2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1})=\frac{2011}{2013}$

$2(\frac{1}{2}-\frac{1}{x+1})=\frac{2011}{2013}$

$\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2=\frac{2011}{4026}$

$\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}$

$x+1=2013$

$x=2013-1$

$x=2012$

13 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

=> \(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{2011}{2013}\)

=> \(1-\frac{2}{x+1}=\frac{2011}{2013}\)

=> \(\frac{2}{x+1}=1-\frac{2011}{2013}=\frac{2}{2013}\)

=> x + 1 = 2013

=> x = 2013 - 1 = 2012

5 tháng 1 2020

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4016}\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\Rightarrow x+1=2013\Rightarrow x=2012\)

3 tháng 8 2015

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)

=> \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)

=> x+1 = 2013 => x = 2012

27 tháng 5 2019

kết quả là 99999999999

fail

27 tháng 7 2015

NHân tất cả với 1/2 sau đó đưa về dạng quen thuộc

17 tháng 9 2016

1/2x3/2+1/3x4/2+1/4x5/2+1/5x6/2+.......+2/Xx(X+1)=2011/2013

2/2x3+2/3x4+2/4x5+2/5x6+.....+2/Xx(X+1)=2011/2013

2x(1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(x+1)=2011/2013

1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(X+1)=2011/4026

1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.....+ 1/x-1/x+1=2011/4026

1/2-1/x+1=2011/4026

1/x+1=1/2-2011/4026

1/x+1=1/2013

Suy ra x=2012

30 tháng 9 2016

biết còn hỏi vậy bạn

5 tháng 8 2016

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+........+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+........+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\Rightarrow x=2012\)

23 tháng 8 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2011}{2013}\)

\(\Rightarrow2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2011}{2013}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

Chúc hok dốt!

23 tháng 8 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2013-1\)

\(\Rightarrow x=2012\)

23 tháng 8 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\) (1/3=2/6;...)

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\frac{2}{x+1}=\frac{2}{2013}\)

=> x + 1 = 2013

x = 2012