\(\dfrac{21-x}{29-x}=\dfrac{7}{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
nên -11<x<-8
hay \(x\in\left\{-10;-9\right\}\)
b) Ta có: \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{21}< \dfrac{x}{21}< \dfrac{14}{21}\)
Suy ra: 9<x<14
hay \(x\in\left\{10;11;12;13\right\}\)
c) Ta có: \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
nên \(\dfrac{-536}{168}< \dfrac{x}{168}< \dfrac{-63}{168}\)
Suy ra: -536<x<-63
hay \(x\in\left\{-535;-534;...;-64\right\}\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)
\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)
\(\Leftrightarrow x=1999\)(thỏa mãn)
Vậy \(x=1999\)
`# \text {DNamNgV}`
`16/21 + 6/7`
`= 16/21 + 18/21`
`= 34/21`
__
`15/22 \times 11/35`
`= (15 \times 11)/(22 \times 35)`
`= (5 \times 3 \times 11)/(2 \times 11 \times 5 \times 7)`
`= (3 \times 1)/(2 \times 7)`
`= 3/14`
___
`8/11 \div 5/22`
`= 8/11 \times 22/5`
`= (8 \times 22)/(11 \times 5)`
`= (8 \times 11 \times 2)/(11 \times 5)`
`= (8 \times 2)/5`
`= 16/5`
___
`9/13 \div 27/39`
`= 9/13 \times 39/27`
`= 9/13 \times 13/9`
`= 1`
\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)
\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}-4=0\)
\(\dfrac{\left(x-17\right)\times725}{33\times725}+\dfrac{\left(x-21\right)\times825}{29\times825}+\dfrac{x\times957}{25\times957}-\dfrac{4\times23925}{23925}=0\)
\(725x-12325+825x-17325+957x-95700=0\)
\(2507x-125350=0\)
\(2507x=125350\)
\(x=50\)
Nếu mà theo cách x - 50 = 0 thì bạn theo cách này nha:
\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)
\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}-4=0\)
\(\dfrac{x-17}{33}-1+\dfrac{x-21}{29}-1+\dfrac{x}{25}-2=0\)
\(\dfrac{x-50}{33}+\dfrac{x-50}{29}+\dfrac{x-50}{25}=0\)
\(\left(x-50\right)\left(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}>0\)
=> \(x-50=0\)
=> \(x=50\)
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)
\(\Leftrightarrow x=105\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)
\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)
\(\Leftrightarrow x=50\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)=0\Leftrightarrow x=50\)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}=-4\\ \Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)=0\\ \Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\\ \Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\right)=0\\ \Leftrightarrow50-x=0\left(vì.\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)\\ \Leftrightarrow x=50\)
a)P=\(\dfrac{-2}{7}+\dfrac{14}{29}+\dfrac{12}{33}+\dfrac{15}{29}+\dfrac{21}{33}+\dfrac{2}{7}\)
=\(\left(\dfrac{-2}{7}+\dfrac{2}{7}\right)+\left(\dfrac{14}{29}+\dfrac{15}{29}\right)+\left(\dfrac{12}{33}+\dfrac{21}{33}\right)\)
=0+1+1=2
b)\(\dfrac{2}{7}.\dfrac{5}{19}+\dfrac{2}{7}.\dfrac{14}{19}+\dfrac{21}{19}-\dfrac{2}{7}.\dfrac{1}{5}\)
=\(\dfrac{2}{7}.\left(\dfrac{5}{19}+\dfrac{14}{19}-\dfrac{1}{5}\right)+\dfrac{21}{19}\)
=\(\dfrac{2}{7}.\dfrac{4}{5}+\dfrac{21}{19}=\dfrac{887}{665}\)
\(\dfrac{21-x}{29-x}=\dfrac{7}{11}\)
=>\(\dfrac{x-21}{x-29}=\dfrac{7}{11}\)
=>\(11\times\left(x-21\right)=7\times\left(x-29\right)\)
=>\(11x-231=7x-203\)
=>\(11x-7x=-203+231\)
=>4x=28
=>x=7