Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bổ sung đề
\(\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\ne0\right)=0\Leftrightarrow x=50\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)
\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)
a/ => \(\dfrac{3}{5}.\dfrac{1}{x}=\dfrac{6}{25}\)
=> \(\dfrac{1}{x}=\dfrac{2}{5}\)
=> x = 5/2
b/ \(\Rightarrow2\left(x-\dfrac{1}{3}\right)=\dfrac{2}{15}\)
=> \(x-\dfrac{1}{3}=\dfrac{1}{15}\)
=> \(x=\dfrac{2}{5}\)
c/ => | x + 1| = 10/21
=> \(\left[{}\begin{matrix}x=-\dfrac{11}{21}\\x=-\dfrac{31}{21}\end{matrix}\right.\)
d/ => \(5x+5=6x-3\)
=> x = 8
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
a: =>19/23>19/x>19/29
=>\(x\in\left\{24;25;26;27;28\right\}\)
b: =>88/132<88/x<88/128
=>132>x>128
=>\(x\in\left\{131;130;129\right\}\)
c: =>\(\left\{{}\begin{matrix}\dfrac{4}{x}-\dfrac{x}{8}< 0\\\dfrac{x}{8}-\dfrac{5}{x}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{32-x^2}{8x}< 0\\\dfrac{x^2-40}{8x}< 0\end{matrix}\right.\)
=>32<x^2<40
=>x=6
\(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Rightarrow\dfrac{2x+19}{21}-\dfrac{2x+17}{23}-\dfrac{2x+7}{33}+\dfrac{2x+5}{35}=0\)
\(\Rightarrow\left(\dfrac{2x+19}{21}+1\right)-\left(\dfrac{2x+17}{23}+1\right)-\left(\dfrac{2x+7}{33}+1\right)+\left(\dfrac{2x+5}{35}+1\right)=0\)
\(\Rightarrow\dfrac{2x+40}{21}-\dfrac{2x+40}{23}-\dfrac{2x+40}{33}+\dfrac{2x+40}{35}=0\)
\(\Rightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Rightarrow2x+40=0\Rightarrow x=-20\)( do \(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}>0\))
Ta có: \(\dfrac{2x+19}{21}-\dfrac{2x+17}{23}=\dfrac{2x+7}{33}-\dfrac{2x+5}{35}\)
\(\Leftrightarrow\left(2x+40\right)\left(\dfrac{1}{21}-\dfrac{1}{23}-\dfrac{1}{33}+\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow2x+40=0\)
hay x=-20
so sánh 2 phân số:
\(\dfrac{23}{27}\) và \(\dfrac{22}{29}\)
\(\dfrac{12}{25}\) và \(\dfrac{25}{29}\)
a) Ta có: \(\dfrac{23}{27}>\dfrac{23}{29}\) (1)
\(\dfrac{23}{29}>\dfrac{22}{29}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{23}{27}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}.\)
b) Ta có: \(\dfrac{25}{29}>\dfrac{25}{50}\) (1)
\(\dfrac{25}{50}>\dfrac{12}{25}=\dfrac{24}{50}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{25}{29}>\dfrac{12}{25}\)
Vậy \(\dfrac{25}{29}>\dfrac{12}{25}.\)
chịu