cho a,b là 2 số nguyên dương và \(a^2+b^2⋮ab\)
Tính \(P=\frac{a^2+b^2}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)
Mà a-b chia hết ab => \(a-b\ge ab\)
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Cho a,b là các số nguyên dương và A =\(\frac{a^2+b^2}{ab+1}\)là số nguyên .cmr A là số chính phương.
Ta có vì \(a^2+b^2\) chia hết cho \(ab\)
=>A= \(\frac{a^{2018}}{a^{1009}b^{1009}}+\frac{b^{2018}}{a^{1009}b^{1009}}\) = \(\frac{a^{1009}}{b^{1009}}+\frac{b^{1009}}{a^{1009}}\) (Rút gọn)
Gọi a1009 là x,b1009 là y
=> \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\)\(=\frac{x^2+y^2-2xy}{xy}+2=\frac{\left(x-y\right)^2}{xy}-2\)
Vì (x-y)2>= 0 với mọi x,y => \(\frac{\left(x-y\right)^2}{xy}+2\)luôn lớn hơn hoặc bằng 2
Vậy dấu bằng xảy ra khi x-y=0 => x=y
Vì a2 + b2 chia hết cho ab => a,b là ước chung => a=b
Vậy A =2
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
Giả sử \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.
Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)
TH1: Nếu trong a và b có một số chẵn, một số lẻ:
Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)
\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)
Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)
\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.
Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.
Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.
TH2: Nếu cả a và b đều lẻ
\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.
Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1)
Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)
Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.
Vậy k luôn bằng 5 và nó là số nguyên tố.
Vì \(ab⋮a\)mà \(a^2+b^2⋮ab\)=>\(a^2+b^2⋮a\)=>\(b^2⋮a\Rightarrow b⋮a\)
\(ab⋮b\)mà \(a^2+b^2⋮ab\Rightarrow a^2+b^2⋮b\Rightarrow a^2⋮b\Rightarrow a⋮b\)
Vì \(a,b\in Z^+\)mà\(a⋮b;b⋮a\)=>\(a=b\Rightarrow P=\frac{a^2+b^2}{ab}=\frac{2a^2}{a^2}=2\)