K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2024

\(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\)

\(=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\right)\)

\(=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}-\dfrac{1}{2^1}-\dfrac{1}{2^2}-...-\dfrac{1}{2^7}\)

\(=1-\dfrac{1}{2^7}\)

\(=\dfrac{127}{128}\)

2 tháng 6 2024

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)

     A x 2 =  1  + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)

A x 2 - A = 1 + \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\))

A x (2 - 1) = 1+\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)-\(\dfrac{1}{8}\)-\(\dfrac{1}{16}\)-\(\dfrac{1}{32}\)-\(\dfrac{1}{64}\)-\(\dfrac{1}{128}\)

A = (1 - \(\dfrac{1}{128}\)) +(\(\dfrac{1}{2}\)-\(\dfrac{1}{2}\)) + (\(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)) +...+(\(\dfrac{1}{64}\) - \(\dfrac{1}{64}\))

A = 1 - \(\dfrac{1}{128}\)

A = \(\dfrac{127}{128}\)

 

26 tháng 3 2019

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

2 tháng 1 2024

*Tham khảo 

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(A\cdot2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\) \(-\) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(A=\) \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}\)

\(A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

Ta lấy\(\frac{1}{128}\)là MSC. Ta tính được \(\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

Kết quả bằng \(\frac{127}{128}\)

14 tháng 1 2018

127/128

14 tháng 1 2018

1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128

=1-1/2+1/2-1/4+1/4-1/8+...+1/64+1/128

=1-1/128

=127/128

18 tháng 3 2017

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(=\frac{127}{128}\)

18 tháng 3 2017

A=\(\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)=\frac{1}{2}\left(1+A-\frac{1}{2}-\frac{1}{128}\right)\)

2A=\(A+\frac{1}{2}-\frac{1}{128}=A+\frac{63}{128}\)

=> A=\(\frac{63}{128}\)

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(=\frac{127}{128}\)

2 tháng 8 2015

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+.........+\frac{1}{64}-\frac{1}{128}=\frac{1}{1}-\frac{1}{128}=\frac{127}{128}\)

19 tháng 3 2020

1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512

= 511/512 .

19 tháng 3 2020

Câu hỏi của Speed of light - Toán lớp 4 - Học toán với OnlineMath

Em tham khảo bài đc OLM k đúng nhé!

14 tháng 7 2021

undefined

14 tháng 7 2021

Đặt S=1+2+4+8+16+32+64+128=20+21+22+...+27

2S=21+22+23+...+28

2S-S=(21+22+23+...+28)-(20+21+22+...+27)

S=28-2