6:(x-1)
14:(2x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
5^x + 5^ ( x + 2 ) = 650
5x + 5x . 52 = 650
5x .( 1 + 25 ) = 650
5x . 26 = 650
5x = 650 : 26
5x = 25
5x = 52
=> x = 2
Vậy x = 2
a, \(\frac{x}{2x+6}+\frac{x}{2x-2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\) Đkxđ : \(x\ne-1;x\ne-3\)
⇌ x(x + 1) - x(x - 3) = 2(3x + 2)
⇌ x2 + x - x2 - 3x = 6x + 4
⇌ -8x = 4
⇌ x = \(-\frac{1}{2}\) ( tm đk)
→ S = \(\left\{-\frac{1}{2}\right\}\)
b, \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{2}{3}\) Đkxđ : \(x\ne-7\)
⇌ 30 + 24 = 2(x + 7)
⇌ 2x = 40
⇌ x = 20 (tmđk)
→ S = \(\left\{20\right\}\)
c, \(\frac{x-1}{\frac{x-1}{x+1}}=\frac{2x-1}{x^2+x}\) Đkxđ : \(x\ne-1\)
⇌ x = 2x - 1
⇌ x = 1 (tmđk)
→ S = \(\left\{1\right\}\)
a) \(3\frac{1}{3}\left(3\frac{1}{4}+2x\right)=6\frac{2}{3}\)
\(3\frac{1}{3}\times3\frac{1}{4}+2x=6\frac{2}{3}\)
\(10\frac{5}{6}+2x=6\frac{2}{3}\)
\(2\times x=6\frac{2}{3}+10\frac{5}{6}=17,5\)
\(x=17,5\div2=8,75\)
Vậy x = 8,75
b) \(x-25\%x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{25}{100}x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{1}{4}\times x=\frac{6}{11}\times1\frac{7}{12}=\frac{19}{22}\)
\(x\times x=\frac{19}{22}+\frac{1}{4}=\frac{49}{44}\)
\(\Rightarrow2x\left(x\times x\right)=\frac{49}{44}\)
\(x=\frac{49}{44}\div2=\frac{49}{88}\)
Vậy x = \(\frac{49}{88}\)
c) \(\left(4,5-2x\right)\times1\frac{4}{7}=\frac{11}{14}\)
\(4,5-2x\times1\frac{4}{7}=\frac{11}{14}\)
\(-2x\times1\frac{4}{7}=\frac{11}{14}-4,5=-3\frac{5}{7}\)
\(-2\times x=-3\frac{5}{7}\div1\frac{4}{7}=-2\frac{4}{11}\)
\(x=-2\frac{4}{11}\div\left(-2\right)=1\frac{2}{11}\)
Vậy x = \(1\frac{2}{11}\)
d) \(-3^2-|2x+3|=4\)
\(9-|2x+3|=4\)
\(-|2x+3|=4-9=-5\)
\(-|2x|=-5-|3|=-8\)
\(-|x|=-8\div2=-4\)
\(-x=4\Rightarrow x=-4\)
Vậy x = -4 (-x được xem là số đối của x)
1) \(\left|4-2x\right|.\dfrac{1}{3}=\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}:\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}.3\)
\(\left|4-2x\right|=1\)
=>\(4-2x=\pm1\)
+)\(TH1:4-2x=1\) +)\(TH2:4-2x=-1\)
\(2x=4-1\) \(2x=4-\left(-1\right)\)
\(2x=3\) \(2x=4+1\)
\(x=3:2\) \(2x=5\)
\(x=1,5\) \(x=5:2\)
Vậy x=1,5 \(x=2,5\)
Vậy x=2,5
2) \(\left(-3\right)^2:\left|x+\left(-1\right)\right|=-3\)
\(9:\left|x+\left(-1\right)\right|=-3\)
\(\left|x+\left(-1\right)\right|=9:\left(-3\right)\)
\(\left|x+\left(-1\right)\right|=-3\)
=> \(x+\left(-1\right)\) sẽ không có giá trị nào ( Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng 0 )
Vậy x = \(\varnothing\)
nói như Ngọc Nguyễn Minh thì dễ qá, có thật đề z ko zọ