\(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+8-6\sqrt{x-1}}=1-x\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

NV
7 tháng 11 2019

a/ ĐKXĐ: \(-\frac{1}{2}\le x\le4\)

\(\sqrt{4-x}=\sqrt{x+1}+\sqrt{2x+1}\)

\(\Leftrightarrow4-x=3x+2+2\sqrt{2x^2+3x+1}\)

\(\Leftrightarrow1-2x=\sqrt{2x^2+3x+1}\) (\(x\le\frac{1}{2}\))

\(\Leftrightarrow4x^2-4x+1=2x^2+3x+1\)

\(\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{7}{2}\left(l\right)\end{matrix}\right.\)

Bài này liên hợp cũng được

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{5x+1}^2-\sqrt{5x+1}\left(\sqrt{14x+7}-\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\Rightarrow x=-\frac{1}{5}\\\sqrt{5x+1}-\sqrt{14x+7}+\sqrt{2x+3}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{5x+1}+\sqrt{2x+3}=\sqrt{14x+7}\)

\(\Leftrightarrow7x+4+2\sqrt{10x^2+17x+3}=14x+7\)

\(\Leftrightarrow2\sqrt{10x^2+17x+3}=7x+3\)

\(\Leftrightarrow4\left(10x^2+17x+3\right)=\left(7x+3\right)^2\)

\(\Leftrightarrow...\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-2x}=a\\\sqrt{2x-1}=b\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a=1-b\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)

\(\Leftrightarrow a^3+a^2-2a=0\)

\(\Leftrightarrow a\left(a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2-2x=0\\2-2x=1\\2-2x=-8\end{matrix}\right.\)

d/ ĐKXĐ: \(x\le\frac{5}{4}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{5-4x}=a\\\sqrt[3]{x+7}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a^2+4b^3=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3-b\\a^2+4b^3=33\end{matrix}\right.\)

\(\Leftrightarrow\left(3-b\right)^2+4b^3=33\)

\(\Leftrightarrow4b^3+b^2-6b-24=0\)

\(\Leftrightarrow\left(b-2\right)\left(4b^2+9b+12\right)=0\)

\(\Rightarrow b=2\Rightarrow\sqrt[3]{x+7}=2\Rightarrow x=1\)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

9 tháng 12 2017

lớp 10 học trường mô đây ?

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

NV
1 tháng 10 2019

a/ ĐKXĐ: \(x^2+2x-6\ge0\)

\(\Leftrightarrow x^2+2x-6+\left(x-2\right)\sqrt{x^2+2x-6}=0\)

\(\Leftrightarrow\sqrt{x^2+2x-6}\left(\sqrt{x^2+2x-6}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-6}=0\left(1\right)\\\sqrt{x^2+2x-6}=2-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-6=0\Rightarrow x=-1\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2+2x-6=\left(2-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\6x=10\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{3}\)

NV
1 tháng 10 2019

Câu b nhìn ko ra hướng, ko biết đề có nhầm đâu ko :(

c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x^2+x\right)\left(x^2+x+2\right)}-\left(3-x\right)\sqrt{x^2+x}=0\)

\(\Leftrightarrow\sqrt{x^2+x}\left(\sqrt{x^2+x+2}-3+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\left(1\right)\\\sqrt{x^2+x+2}=3-x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)

d/

Ta có \(\sqrt{x^2+3x+4}=\sqrt{\left(x+\frac{3}{4}\right)^2+\frac{7}{4}}>1\)

\(\Rightarrow\sqrt{x^2+3x+4}-1>0\)

Nhân 2 vế của pt với \(\sqrt{x^2+3x+4}-1\)

\(\left(\sqrt{x^2+3x+4}-1\right)\left(x^2+3x+3\right)=3x\left(x^2+3x+3\right)\)

\(\Leftrightarrow\left(x^2+3x+3\right)\left(\sqrt{x^2+3x+4}-1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+3=0\left(vn\right)\\\sqrt{x^2+3x+4}=3x+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x^2+3x+4=\left(3x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow8x^2+3x-3=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{105}}{6}\\x=\frac{-3-\sqrt{105}}{6}\left(l\right)\end{matrix}\right.\)