K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5

B = \(\dfrac{-8}{2n-1}\) (n \(\in\) Z)

a; Tìm điều kiện của số nguyên n để B là phân số

B là phân số khi và chỉ khi 2n - 1 \(\ne\) 0 ⇒ n ≠ \(\dfrac{1}{2}\)

Vậy B là phân số với mọi giá trị của n \(\in\) Z

b; Tìm số nguyên n để B nguyên

B = \(\dfrac{-8}{2n-1}\) \(\in\) Z ⇔ 8 ⋮ 2n - 1

2n - 1 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}

Lập bảng ta có:

2n - 1 -8 -4 -2 -1 1 2 4 8
n -7/2 -3/2 -1/2 0 1 3/2 5/2 9/2

vì n thuộc z nên theo bảng trên ta có: n \(\in\){0; 1}

Kết luận với n \(\in\) {0; 1} thì biểu thức B =\(\dfrac{-8}{2n-1}\) là một só nguyên. 

 

17 tháng 5

nhanh giúp mk với

2 tháng 7 2017

a, đk để là phân số thì 2n +3 \(\ne\)0 hay n \(\ne\)-3/2

b, a nguyên tương đương với 2b +1 chia hết cho 2n +3  tách phân số ra ta đưowjc 

\(1-\frac{2}{2n+3}\)=> 2n +3 thuộc ước của 2

2n+312-2
2n-2-1-5
n-1-0,5  -5/2

còn trường hợp -1 ta có n =-2 

VẬY VỚI N THUỘC { -1;-0,5;-5/2;-2} THÌ a nguyên

17 tháng 4 2022

a.\(A=\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=1-\dfrac{5}{n+1}\)

\(ĐK:n\ne0;n\ne4\)

b.Để A nguyên thì \(\dfrac{5}{n+1}\in Z\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

*n+1=1 => n=0

*n+1=-1 => n=-2

*n+1=5 => n=4

*n+1=-5 => n=-6

Vậy \(n=\left\{0;-2;4;-6\right\}\) thì A nguyên

17 tháng 4 2022

câu a n nguyên nha bạn

14 tháng 2 2019

a,Với \(n\in Z\)ta có \(2n+1\in Z;n-3\in Z\)

Do đó để \(A=\frac{2n+1}{n-3}\)là phân số thì \(n-3\ne0\Rightarrow n\ne3\)

Vậy với n thuộc Z và n khác 3 thì A là phân số

b,\(A=\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+1+6}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\)

Để A nguyên 

\(\Rightarrow7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)

Vậy..........................

NM
14 tháng 1 2022

a. điều kiện của n để B là phân số là : 

\(n-2\ne0\Leftrightarrow n\ne2\)

b. ta có \(B=\frac{n-7}{n-2}=1-\frac{5}{n-2}\) nguyên khi n-2 là ước của 5

hay \(n-2\in\left\{-5;-1;1;5\right\}\Leftrightarrow n\in\left\{-3;1;3;7\right\}\)

4 tháng 7 2021

a, Để A là phân số thì n-1\(\ne\) 0  

=> n\(\ne\) 1 

b, Có : \(A=\frac{4}{n-1}\)

Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}

Ta có bảng sau 

n-1124-1-2-4
n2350-1

-3

vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}

26 tháng 2 2016

a, Để C là phân số thì n thuộc Z và n + 1 ≠ 0 => -1 ≠ 0 

b, Để C là số nguyên thì n + 3 ⋮ n + 1.

Ta có n + 3 = n + 1 + 2. Để n + 3 ⋮ n + 1 thì n+1 ⋮ n + 1 và 2 ⋮ n+1 => n+1 ∈ Ư(2)

Mà Ư(2) = {1 ; -1 ; 2 ; -2}

Ta có bảng  

n+11-12-2
n0-21-3

Vậy n ∈ {0 ; -2 ; 1 ; -3}

24 tháng 2 2017

5/a,

ta cần c/m: a/b=a +c/b+d

<=> a(b+d) = b(a+c)

      ab+ad = ba+bc

      ab-ba+ad=bc

                ad=bc

a/b=c/d

vậy đẳng thức được chứng minh

b, Tương tự