B=-8/2n-1 với N thuộc z a,tìm điều kiện của số nguyên n để B là phân số b,tìm số nguyên n để B nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk để là phân số thì 2n +3 \(\ne\)0 hay n \(\ne\)-3/2
b, a nguyên tương đương với 2b +1 chia hết cho 2n +3 tách phân số ra ta đưowjc
\(1-\frac{2}{2n+3}\)=> 2n +3 thuộc ước của 2
2n+3 | 1 | 2 | -2 |
2n | -2 | -1 | -5 |
n | -1 | -0,5 | -5/2 |
còn trường hợp -1 ta có n =-2
VẬY VỚI N THUỘC { -1;-0,5;-5/2;-2} THÌ a nguyên
a.\(A=\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=1-\dfrac{5}{n+1}\)
\(ĐK:n\ne0;n\ne4\)
b.Để A nguyên thì \(\dfrac{5}{n+1}\in Z\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
*n+1=1 => n=0
*n+1=-1 => n=-2
*n+1=5 => n=4
*n+1=-5 => n=-6
Vậy \(n=\left\{0;-2;4;-6\right\}\) thì A nguyên
a,Với \(n\in Z\)ta có \(2n+1\in Z;n-3\in Z\)
Do đó để \(A=\frac{2n+1}{n-3}\)là phân số thì \(n-3\ne0\Rightarrow n\ne3\)
Vậy với n thuộc Z và n khác 3 thì A là phân số
b,\(A=\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+1+6}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\)
Để A nguyên
\(\Rightarrow7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)
Vậy..........................
a. điều kiện của n để B là phân số là :
\(n-2\ne0\Leftrightarrow n\ne2\)
b. ta có \(B=\frac{n-7}{n-2}=1-\frac{5}{n-2}\) nguyên khi n-2 là ước của 5
hay \(n-2\in\left\{-5;-1;1;5\right\}\Leftrightarrow n\in\left\{-3;1;3;7\right\}\)
a, Để A là phân số thì n-1\(\ne\) 0
=> n\(\ne\) 1
b, Có : \(A=\frac{4}{n-1}\)
Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}
Ta có bảng sau
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -3 |
vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}
a, Để C là phân số thì n thuộc Z và n + 1 ≠ 0 => -1 ≠ 0
b, Để C là số nguyên thì n + 3 ⋮ n + 1.
Ta có n + 3 = n + 1 + 2. Để n + 3 ⋮ n + 1 thì n+1 ⋮ n + 1 và 2 ⋮ n+1 => n+1 ∈ Ư(2)
Mà Ư(2) = {1 ; -1 ; 2 ; -2}
Ta có bảng
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n ∈ {0 ; -2 ; 1 ; -3}
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
B = \(\dfrac{-8}{2n-1}\) (n \(\in\) Z)
a; Tìm điều kiện của số nguyên n để B là phân số
B là phân số khi và chỉ khi 2n - 1 \(\ne\) 0 ⇒ n ≠ \(\dfrac{1}{2}\)
Vậy B là phân số với mọi giá trị của n \(\in\) Z
b; Tìm số nguyên n để B nguyên
B = \(\dfrac{-8}{2n-1}\) \(\in\) Z ⇔ 8 ⋮ 2n - 1
2n - 1 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
Lập bảng ta có:
vì n thuộc z nên theo bảng trên ta có: n \(\in\){0; 1}
Kết luận với n \(\in\) {0; 1} thì biểu thức B =\(\dfrac{-8}{2n-1}\) là một só nguyên.
nhanh giúp mk với