K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 5

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên

$\Rightarrow 2a^2-1=b^2$

Nếu $a\vdots 3$ thì $b^2=2a^2-1\equiv -1\equiv 2\pmod 3$ (vô lý do 1 scp không chia 3 dư 2)

$\Rightarrow a$ không chia hết cho 3

$\Rightarrow a^2\equiv 1\pmod 3$

$\Rightarrow n+1\equiv 1\pmod 3$

$\Rightarrow n\equiv 0\pmod 3$ hay $n$ chia hết cho 3 (1)

Mặt khác:

$b^2=2a^2-1$ lẻ nên $b$ lẻ. Đặt $b=2k+1$ với $k$ tự nhiên.

$2a^2-1=(2k+1)^2=4k^2+4k+1$

$\Rightarrow 2a^2=4k^2+4k+2$

$\Rightarrow a^2=2k^2+2k+1$. Do đó $a$ lẻ. Đặt $a=2m+1$ với $m$ tự nhiên.

Khi đđ:

$n+1=(2m+1)^2=4m^2+4m+1\Rightarrow n=4m^2+4m=4m(m+1)$
Hiển nhiên $m(m+1)$ là tích 2 số tự nhiên liên tiếp nên $m(m+1)\vdots 2$

$\Rightarrow n=4m(m+1)\vdots 8(2)$

Từ $(1); (2)\Rightarrow n\vdots 24$. Ta có đpcm.

17 tháng 1 2015

ở trong toán tt2

 

25 tháng 1 2015

các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4

28 tháng 12 2021

Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)

Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)

\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)

Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)

28 tháng 12 2021

Chị em mãi đỉnh ạvui!! Cơ mà không dám giấu gì chị là em ko hiểu đâu ạ:( Chị có thể làm chi tiết hơn đc chị vì em rất thiểu năng ạ.

 

22 tháng 1 2015

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

21 tháng 6 2020

ùi hơi khó thế này thì có làm đc ko

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP