K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2015

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

21 tháng 6 2020

ùi hơi khó thế này thì có làm đc ko

18 tháng 3 2018

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

18 tháng 3 2018

bạn vào  https://h.vn/hoi-dap/quesion/129628.html

30 tháng 7 2023

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

26 tháng 1 2016

Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2     (k,m \(\in\)N)

Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ

=>m=2a+1      (a \(\in\) N)

=>m2=(2a+1)2=(2a)2+2.2a.1+12

                    =4a.a+4.a+1

                  =4a(a+1)+1

=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)

=>n là số chẵn

=>n+1 là số lẻ => n+1=2b+1              (b \(\in\)N)

=>k2=(2b+1)2=(2b)2+2.2b.1+12

                    =4b.b+4b+1

                   =4b(b+1)+1

=>n=4b(b+1)+1-1=4b(b+1)

Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp

=>4b(b+1) chia hết cho 2.4=8          (1)

Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2      (mod 3) 

Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1

=>Để k2+m2 =2        (mod 3)

thì k2=1      (mod 3)

và m2=1       (mod 3)

=>m2-k2 chia hết cho 3

=>(2n+1)-(n+1)=n chia hết cho 3

Vậy n chia hết cho 3              (2)

Từ (1) và (2) và (8;3)=1

=>n chia hết cho 8.3=24    (đpcm)

14 tháng 3

tao là fan CR7

26 tháng 11

Tao phan CR7 chứ ko phải Messi