Một phòng họp có 238 chỗ ngồi và được chia thành các dãy ghế có số chỗ ngồi bằng nhau. Nếu bớt đi mỗi dãy 3 chỗ ngồi và thêm cho 3 dãy ghế thì số chỗ ngồi trong phòng không thay đổi. Hỏi ban đầu phòng họp được chia thành bảo nhiêu dãy ghế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy là x
Số chỗ ngồi trong 1 dãy là 360/x
Theo đề, ta có phương trình:
(360/x+4)(x-3)=360
\(\Leftrightarrow360-\dfrac{1080}{x}+4x-12=360\)
\(\Leftrightarrow-\dfrac{1080}{x}+4x+348=360\)
\(\Leftrightarrow4x-\dfrac{1080}{x}=12\)
\(\Leftrightarrow4x^2-1080=12x\)
\(\Leftrightarrow x^2-3x-270=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-270\right)=1089>0\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-33}{2}=\dfrac{-30}{2}=-15\left(loại\right)\\x_2=\dfrac{3+33}{2}=\dfrac{36}{2}=18\left(nhận\right)\end{matrix}\right.\)
Gọi x là số dãy ghế trong phòng lúc đầu (x nguyên, x > 3)
x - 3 là số dãy ghế lúc sau.
Số chỗ ngồi trên mỗi dãy lúc đầu: \(\dfrac{480}{x}\) (chỗ), số chỗ ngồi trên mỗi dãy lúc sau: \(\dfrac{480}{x-3}\) (chỗ)
Ta có phương trình: \(\dfrac{480}{x-3}=\dfrac{480}{x}=8\)
480x - 480 ( x-3 ) = 8x(x-3 )
480x - 480x + 1440 = 8x^2 -24x
<=> 480x - 480x + 1440 - 8x^2 + 24x = 0
<=> 1440 - 8x^2 + 24x = 0
Giải ra được x1 = 15 (thỏa mãn); x2 = - 12 (loại)
Vậy trong phòng có 15 dãy ghế.
Gọi số dãy ban đầu là x ( x thuộc R*)
số người mỗi dãy ban đầu là 360:x ( người )
------------------------lúc sau là 360:x + 4( người )
số dãy lúc sau là x-3 ( dãy )
Ta có pt ( x-3) ( 360:x +4 ) =360
...
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Gọi ban đầu số chỗ ngồi trong phòng được chia thành \(x\)dãy, \(x\inℕ^∗\).
Số ghế trong một dãy là: \(\frac{360}{x}\)(ghế)
Theo bài ra ta có phương trình:
\(\left(x-3\right)\left(\frac{360}{x}+4\right)=360\)
\(\Leftrightarrow\left(x-3\right)\left(360+4x\right)=360x\)
\(\Leftrightarrow4x^2-12x-1080=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=18\left(tm\right)\\x=-15\left(l\right)\end{cases}}\)
Hỏi ban đầu phòng họp được chi là sao em nhỉ?