Cho M = \(2+2^2+2^3+.......+2^{20}.\). Chứng tỏ rằng M \(⋮\)15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
Đáp án đây nhé : https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++Ch%E1%BB%A9ng+t%E1%BB%8F+M+chia+h%E1%BA%BFt+cho+5M=2+22+23+...+220&id=733479
Bạn chép vào đi
M = (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^17+2^18+2^19+2^20)
= 2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+.....+2^17.(1+2+2^2+2^3)
= 2.15 + 2^5.15 +.... +2^17.15
= 15.(2+2^5+....+2^17) chia hết cho 15
Giải : A = 2 + 22 + 23 + ........ + 220
2A = 4 + 23 + 24 + ........ + 221
Suy ra : 2A - A = 221 + 4 - ( 2 + 22 )
Vậy : A = 221
\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)
\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)
\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)
\(=30\cdot\left(1+...+2^{17}\right)⋮5\)
\(M=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ =6+2^2.6+...+2^{18}.6\\ =\left(1+2^2+...+2^{18}\right).6⋮6\)
M = 2 + 22 + 23 + ... + 220
M = 21 + 22 + 23 + ... + 220
Xét dãy số: 1; 2; 3;...; 20 dãy số này có 20 số hạng vậy M có 20 hạng tử. Vì 20 : 2 = 10 nên nhóm 2 hạng tử liên tiếp của M thành 1 nhóm thì:
M = (21 + 22) + (23 + 24) + ... + (219 + 220)
M = 6 + 22.( 2+ 22) + ... + 218(2 + 22)
M = 6 + 22.6 + ... + 218. 6
M = 6. ( 1 + 22 + ... + 218)
vì 6 ⋮ 6 nên 6.(1 + 22 + ... + 218) ⋮ 6 hay M = 2 + 22+...+220 ⋮ 6(đpcm)
A=4+(22+23+24+...+220)
A-4=22+23+24+...+220
2(A-4)=23+24+25+...+221
A-4=2(A-4)-(A-4)=(23+24+25+...+221)-(22+23+24+...+220)
A-4=(23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)
A-4=221-4
A =221-4+4
A =221
\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)
\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)
\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)
Ta có :
\(M=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(\Rightarrow M=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow M=2.15+...+2^{17}.15\)
\(\Rightarrow M=15\left(2+...+2^{17}\right)\)
\(\Rightarrow M⋮15\)
\(\RightarrowĐPCM\)
viết M dưới dạng:
M=\(2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+...\)
M=\(2.15+2^5.15+...\)
\(=>\) M chia hết cho 15